Mathematics and Statistics

Program Requirements

Course Prerequisites

The following courses central to B.Math. programs have grade requirements in their prerequisites:

- MATH 2000 requires C+ in MATH 1002, or B+ in (MATH 2007 or MATH 1005), and C+ in MATH 1102, or B+ in (MATH 1107 or MATH 1104).
- MATH 2100 requires C+ in MATH 1102, or B+ in MATH 2107.
- MATH 2454 requires C+ in (MATH 1002 or MATH 2007 or MATH 1005), and C+ in (MATH 1102 or MATH 2107).
- STAT 2655 requires C+ in (MATH 1002 or MATH 2007 or MATH 1005), and C+ in (MATH 1102 or MATH 1107 or MATH 1104).
- MATH 2007 requires MATH 1004 or C- in (MATH 1007 or MATH 1009).
- MATH 2107 requires MATH 1104 or C- in MATH 2107.

Course Categories for B.Math. Programs

2000-level Honours Sequence

The following courses constitute the 2000-level Honours Sequence:

- MATH 2000 [1.0] Calculus and Introductory Analysis II (Honours)
- MATH 2100 [1.0] Algebra II (Honours)
- MATH 2454 [0.5] Ordinary Differential Equations (Honours)
- STAT 2559 [0.5] Basics of Statistical Modeling (Honours)
- STAT 2655 [0.5] Introduction to Probability with Applications (Honours)
- MATH 2907 [0.5] Directed Studies (Honours)

3000-level Honours Sequence

The following courses constitute the 3000-level Honours Sequence. Courses in the 3000-level Honours Sequence have grade levels in their prerequisites:

- MATH 3001 [0.5] Real Analysis I (Honours)
- MATH 3002 [0.5] Real Analysis II (Honours)
- MATH 3003 [0.5] Advanced Differential Calculus (Honours)
- MATH 3057 [0.5] Functions of a Complex Variable (Honours)
- MATH 3008 [0.5] Ordinary Differential Equations (Honours)
- MATH 3106 [0.5] Introduction to Group Theory (Honours)
- MATH 3158 [0.5] Rings and Fields (Honours)
- MATH 3306 [0.5] Elements of Set Theory (Honours)
- MATH 3355 [0.5] Number Theory and Applications (Honours)
- MATH 3806 [0.5] Numerical Analysis (Honours)
- MATH 3807 [0.5] Mathematical Software (Honours)
- MATH 3855 [0.5] Discrete Structures and Applications (Honours)
- STAT 3506 [0.5] Stochastic Processes and Applications (Honours)
- STAT 3553 [0.5] Regression Modeling (Honours)
- STAT 3558 [0.5] Elements of Probability Theory (Honours)
- STAT 3559 [0.5] Mathematical Statistics (Honours)

Natural Science Electives

All courses with the following subject codes: BIOC, BIOL, CHEM, ENSC, ERTH, ISCI, NSCI, PHYS

APPROVED ARTS OR SOCIAL SCIENCES ELECTIVES

All courses offered by the Faculty of Arts and Social Sciences and the Faculty of Public Affairs are acceptable as Arts or Social Sciences Electives except for the following courses, which are only accepted for credit as free electives in any program of the School. See item 3 under Prohibited and Restricted Courses below concerning Computer Mathematics programs.

Business

- BUSI 1001 [0.5] Principles of Financial Accounting
- BUSI 1002 [0.5] Management Accounting
- BUSI 1004 [0.5] Financial Accounting for Business Students
- BUSI 1005 [0.5] Managerial Accounting for Business Students
- BUSI 1402 [0.5] Introduction to Business Information and Communication Technologies
- BUSI 2001 [0.5] Intermediate Accounting I
- BUSI 2002 [0.5] Intermediate Accounting II
- BUSI 2402 [0.5] Business Applications Development
- BUSI 3001 [0.5] Accounting for Business Combinations
- BUSI 3008 [0.5] Intermediate Management Accounting and Control
- BUSI 4000 [0.5] Accounting Theory
- BUSI 4002 [0.5] Advanced Accounting Problems

Economics

- ECON 4005 [0.5] Operations Research II

Geography

- GEOG 3102 [0.5] Geomorphology
- GEOG 3103 [0.5] Watershed Hydrology
- GEOG 3105 [0.5] Climate and Atmospheric Change
- GEOG 3108 [0.5] Soil Properties
- GEOG 4000/ENST 4400 [0.5] Field Studies
- GEOG 4005/ENST 4005 [0.5] Directed Studies in Geography
- GEOG 4101 [0.5] Two Million Years of Environmental Change
- GEOG 4103/ENVE 3003 [0.5] Water Resources Engineering
- GEOG 4104 [0.5] Microclimatology
- GEOG 4108 [0.5] Permafrost

Geomatics

- GEOM 2007 [0.5] Geographic Information Systems
Mathematics and Statistics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOM 3002</td>
<td>Air Photo Interpretation and Remote Sensing</td>
</tr>
<tr>
<td>GEOM 3005</td>
<td>Geospatial Analysis</td>
</tr>
<tr>
<td>GEOM 3007</td>
<td>Cartographic Theory and Design</td>
</tr>
<tr>
<td>GEOM 4003</td>
<td>Remote Sensing of the Environment</td>
</tr>
<tr>
<td>GEOM 4008</td>
<td>Advanced Topics in Geographic Information Systems</td>
</tr>
<tr>
<td>GEOM 4009</td>
<td>Applications in Geographic Information Systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSYC 2700</td>
<td>Introduction to Cognitive Psychology</td>
</tr>
<tr>
<td>PSYC 3506</td>
<td>Cognitive Development</td>
</tr>
<tr>
<td>PSYC 3700</td>
<td>Cognition (Honours Seminar)</td>
</tr>
<tr>
<td>PSYC 3702</td>
<td>Perception</td>
</tr>
<tr>
<td>PSYC 4001</td>
<td>Special Topics in Psychology</td>
</tr>
</tbody>
</table>

Prohibited and Restricted Courses

1. MATH 1805/COMP 1805 can be counted only as a half-credit free elective in Mathematics and Statistics programs.

2. The following courses may not be counted for academic credit (even as free electives) in any program offered by the School of Mathematics and Statistics: BIOL 3604, COMS 3001, CRCJ 3001, ECON 1401, ECON 1402, ECON 2201 (no longer offered), ECON 2202 (no longer offered), ECON 2210, ECON 2400 (no longer offered), ECON 3001, ECON 4001, ECON 4002, ECON 4004, ECON 4025, ECON 4706, ECON 4707, ECON 4713, ECOR 2606, GEOG 2006, GEOG 3003, NEUR 2001, NEUR 2002, NEUR 3001, NEUR 3002, PSCI 2702, PSYC 2001, PSYC 2002, PSYC 3000 [1.0], SOCI 3000, SOCI 3002, SOCI 4009, SOWK 3001, SYSC 2510.

3. Students who have completed ECON 2201 (no longer offered) and ECON 2202 (no longer offered) and enter a B.Math. General program may be exempted from taking STAT 2507 and STAT 2509 only with permission of the School of Mathematics and Statistics, and provided the grade in ECON 2201 (no longer offered) and ECON 2202 (no longer offered) is B- or higher in each.

4. BUSI 1402, BUSI 2402 and COMP 1001 may not count for credit in the Computer Mathematics Honours or General program, even as free electives.

5. Only one of MATH 3806, COMP 3806, CMPS 3800 or MATH 3800 may count for credit in a B.Math. program.

Mathematics

B. Math. Honours (20.0 credits)

A. Credits Included in the Major CGPA (11.5 credits)

<table>
<thead>
<tr>
<th>2.5 credits in:</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1002 [1.0]</td>
<td></td>
</tr>
<tr>
<td>Calculus and Introductory Analysis I</td>
<td></td>
</tr>
<tr>
<td>MATH 1102 [1.0]</td>
<td></td>
</tr>
<tr>
<td>Algebra I</td>
<td></td>
</tr>
<tr>
<td>MATH 1800 [0.5]</td>
<td></td>
</tr>
<tr>
<td>Introduction to Mathematical Reasoning</td>
<td></td>
</tr>
</tbody>
</table>

2. 3.5 credits in:

<table>
<thead>
<tr>
<th>3.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2000 [1.0]</td>
</tr>
<tr>
<td>Calculus and Introductory Analysis II (Honours)</td>
</tr>
<tr>
<td>MATH 2100 [1.0]</td>
</tr>
<tr>
<td>Algebra II (Honours)</td>
</tr>
<tr>
<td>MATH 2454 [0.5]</td>
</tr>
<tr>
<td>Ordinary Differential Equations (Honours)</td>
</tr>
<tr>
<td>STAT 2559 [0.5]</td>
</tr>
<tr>
<td>Basics of Statistical Modeling (Honours)</td>
</tr>
<tr>
<td>STAT 2655 [0.5]</td>
</tr>
<tr>
<td>Introduction to Probability with Applications (Honours)</td>
</tr>
</tbody>
</table>

3. 2.0 credits in:

<table>
<thead>
<tr>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3001 [0.5]</td>
</tr>
<tr>
<td>Real Analysis I (Honours)</td>
</tr>
<tr>
<td>MATH 3057 [0.5]</td>
</tr>
<tr>
<td>Functions of a Complex Variable (Honours)</td>
</tr>
<tr>
<td>MATH 3106 [0.5]</td>
</tr>
<tr>
<td>Introduction to Group Theory (Honours)</td>
</tr>
<tr>
<td>MATH 3158 [0.5]</td>
</tr>
<tr>
<td>Rings and Fields (Honours)</td>
</tr>
</tbody>
</table>

4. 0.5 credit from:

<table>
<thead>
<tr>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 4005 [0.5]</td>
</tr>
<tr>
<td>Honours Project (Honours)</td>
</tr>
</tbody>
</table>

B. Credits Not Included in the Major CGPA (8.5 credits)

8. 4.0 credits not in MATH, STAT or COMP, consisting of:

<table>
<thead>
<tr>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. 1.0 credit in Natural Science Electives</td>
</tr>
<tr>
<td>b. 2.0 credits in Approved Arts or Social Sciences Electives</td>
</tr>
<tr>
<td>c. 1.0 credit at the 2000-level or higher, in Natural Science Electives or in Approved Arts or Social Sciences Electives</td>
</tr>
</tbody>
</table>

9. 4.5 credits in free electives

<table>
<thead>
<tr>
<th>4.5</th>
</tr>
</thead>
</table>

Total Credits

| 20.0 |

Mathematics with Concentration in Stochastics

B. Math. Honours (20.0 credits)

Items 3, 4, 5 and 6 in the Mathematics degree requirements are replaced by:

3. 3.0 credits in:

<table>
<thead>
<tr>
<th>3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3001 [0.5]</td>
</tr>
<tr>
<td>Real Analysis I (Honours)</td>
</tr>
<tr>
<td>MATH 3008 [0.5]</td>
</tr>
<tr>
<td>Ordinary Differential Equations (Honours)</td>
</tr>
<tr>
<td>STAT 3506 [0.5]</td>
</tr>
<tr>
<td>Stochastic Processes and Applications (Honours)</td>
</tr>
<tr>
<td>STAT 3558 [0.5]</td>
</tr>
<tr>
<td>Elements of Probability Theory (Honours)</td>
</tr>
<tr>
<td>STAT 3559 [0.5]</td>
</tr>
<tr>
<td>Mathematical Statistics (Honours)</td>
</tr>
<tr>
<td>STAT 4501 [0.5]</td>
</tr>
<tr>
<td>Probability Theory (Honours)</td>
</tr>
</tbody>
</table>

4. 0.5 credit from:

<table>
<thead>
<tr>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 3553 [0.5]</td>
</tr>
<tr>
<td>Regression Modeling (Honours)</td>
</tr>
<tr>
<td>MATH 3801 [0.5]</td>
</tr>
<tr>
<td>Linear Programming</td>
</tr>
</tbody>
</table>

5. 0.5 credit in STAT at the 4000-level

| 0.5 |
Computational and Applied Mathematics and Statistics

B.Math. Honours (20.0 credits)

A. Credits included in the Major CGPA (14.0 credits)

1. **8.0 credits in:**
 - MATH 1002 [1.0] Calculus and Introductory Analysis I
 - MATH 1102 [1.0] Algebra I
 - MATH 1800 [0.5] Introduction to Mathematical Reasoning
 - MATH 2000 [1.0] Calculus and Introductory Analysis II (Honours)
 - MATH 2100 [1.0] Algebra II (Honours)
 - STAT 2655 [0.5] Introduction to Probability with Applications (Honours)
 - STAT 2559 [0.5] Basics of Statistical Modeling (Honours)
 - COMP 1405 [0.5] Introduction to Computer Science I
 - COMP 1406 [0.5] Introduction to Computer Science II
 - COMP 2401 [0.5] Introduction to Systems Programming
 - COMP 2402 [0.5] Abstract Data Types and Algorithms
 - COMP 2404 [0.5] Introduction to Software Engineering

2. **1.5 credits in:**
 - MATH 3804 [0.5] Design and Analysis of Algorithms I
 - MATH 3806 [0.5] Numerical Analysis (Honours)
 - STAT 3558 [0.5] Elements of Probability Theory (Honours)

3. **0.5 credits from:**
 - STAT 3506 [0.5] Stochastic Processes and Applications (Honours)
 - STAT 3553 [0.5] Regression Modeling (Honours)

4. **1.0 credit from:**
 - MATH 2454 [0.5] Ordinary Differential Equations (Honours)
 - MATH 3855 [0.5] Discrete Structures and Applications (Honours)

5. **0.5 credit in:**
 - MATH 4905 [0.5] Honours Project (Honours)

6. **1.5 credits from:**
 - MATH 4109 [0.5] Fields and Coding Theory (Honours)
 - MATH 4700 [0.5] Partial Differential Equations (Honours)
 - MATH 4703 [0.5] Dynamical Systems (Honours)
 - MATH 4708 [0.5] Asymptotic Methods of Applied Mathematics (Honours)
 - MATH 4801 [0.5] Topics in Combinatorics (Honours)
 - MATH 4802 [0.5] Introduction to Mathematical Logic (Honours)
 - MATH 4803 [0.5] Computable Functions (Honours)
 - MATH 4805 [0.5] Theory of Automata (Honours)
 - MATH 4806 [0.5] Numerical Linear Algebra (Honours)
 - MATH 4807 [0.5] Game Theory (Honours)
 - MATH 4808 [0.5] Graph Theory and Algorithms (Honours)
 - MATH 4809 [0.5] Mathematical Cryptography (Honours)
 - MATH 4811 [0.5] Combinatorial Design Theory (Honours)
 - MATH 4816 [0.5] Numerical Analysis for Differential Equations (Honours)
 - MATH 4821 [0.5] Quantum Computing (Honours)
 - MATH 4822 [0.5] Wavelets and Digital Signal Processing (Honours)
 - STAT 4500 [0.5] Parametric Estimation (Honours)
 - STAT 4501 [0.5] Probability Theory (Honours)
 - STAT 4502 [0.5] Survey Sampling (Honours)
 - STAT 4503 [0.5] Applied Multivariate Analysis (Honours)
 - STAT 4504 [0.5] Statistical Design and Analysis of Experiments (Honours)
 - STAT 4507 [0.5] Statistical Inference (Honours)
 - STAT 4508 [0.5] Stochastic Models (Honours)
 - STAT 4509 [0.5] Advanced Mathematical Modeling (Honours)
 - STAT 4555 [0.5] Monte Carlo Simulation (Honours)
 - STAT 4601 [0.5] Data Mining I (Honours)
 - STAT 4603 [0.5] Time Series and Forecasting (Honours)
 - STAT 4604 [0.5] Statistical Computing (Honours)

7. **1.0 credit in MATH or STAT at the 3000-level or above**

8. **1.0 credit Not Included in the Major CGPA (6.0 credits)**

9. **2.0 credits in Approved Arts or Social Sciences Electives**

10. **1.0 credit at the 2000-level or above in Natural Sciences or Approved Arts or Social Sciences Electives**

11. **2.0 credits in free electives**

Total Credits: 20.0

Computational and Applied Mathematics and Statistics with Concentration

B.Math. Honours (20.0 credits)

A. Credits included in the Major CGPA (14.0 credits)

1. **7.0 credits in:**
 - MATH 1002 [1.0] Calculus and Introductory Analysis I
 - MATH 1102 [1.0] Algebra I
 - MATH 1800 [0.5] Introduction to Mathematical Reasoning
 - MATH 2000 [1.0] Calculus and Introductory Analysis II (Honours)
 - MATH 2454 [0.5] Ordinary Differential Equations (Honours)
 - MATH 2559 [0.5] Basics of Statistical Modeling (Honours)

2. **1.5 credits in:**
 - MATH 4905 [0.5] Honours Project (Honours)
 - MATH 4802 [0.5] Introduction to Mathematical Logic (Honours)
 - MATH 4803 [0.5] Computable Functions (Honours)
 - MATH 4805 [0.5] Theory of Automata (Honours)
 - MATH 4806 [0.5] Numerical Linear Algebra (Honours)
 - MATH 4807 [0.5] Game Theory (Honours)
 - MATH 4808 [0.5] Graph Theory and Algorithms (Honours)
 - MATH 4809 [0.5] Mathematical Cryptography (Honours)
 - MATH 4811 [0.5] Combinatorial Design Theory (Honours)
 - MATH 4816 [0.5] Numerical Analysis for Differential Equations (Honours)
 - MATH 4821 [0.5] Quantum Computing (Honours)
 - MATH 4822 [0.5] Wavelets and Digital Signal Processing (Honours)
 - STAT 4500 [0.5] Parametric Estimation (Honours)
 - STAT 4501 [0.5] Probability Theory (Honours)
 - STAT 4502 [0.5] Survey Sampling (Honours)
 - STAT 4503 [0.5] Applied Multivariate Analysis (Honours)
 - STAT 4504 [0.5] Statistical Design and Analysis of Experiments (Honours)
 - STAT 4507 [0.5] Statistical Inference (Honours)
 - STAT 4508 [0.5] Stochastic Models (Honours)
 - STAT 4509 [0.5] Advanced Mathematical Modeling (Honours)
 - STAT 4555 [0.5] Monte Carlo Simulation (Honours)
 - STAT 4601 [0.5] Data Mining I (Honours)
 - STAT 4603 [0.5] Time Series and Forecasting (Honours)
 - STAT 4604 [0.5] Statistical Computing (Honours)

3. **1.5 credits from:**
 - MATH 4109 [0.5] Fields and Coding Theory (Honours)
 - MATH 4700 [0.5] Partial Differential Equations (Honours)
 - MATH 4703 [0.5] Dynamical Systems (Honours)
 - MATH 4708 [0.5] Asymptotic Methods of Applied Mathematics (Honours)
 - MATH 4801 [0.5] Topics in Combinatorics (Honours)
 - MATH 4802 [0.5] Introduction to Mathematical Logic (Honours)
 - MATH 4803 [0.5] Computable Functions (Honours)
 - MATH 4805 [0.5] Theory of Automata (Honours)
 - MATH 4806 [0.5] Numerical Linear Algebra (Honours)
 - MATH 4807 [0.5] Game Theory (Honours)
 - MATH 4808 [0.5] Graph Theory and Algorithms (Honours)
 - MATH 4809 [0.5] Mathematical Cryptography (Honours)
 - MATH 4811 [0.5] Combinatorial Design Theory (Honours)
 - MATH 4816 [0.5] Numerical Analysis for Differential Equations (Honours)
 - MATH 4821 [0.5] Quantum Computing (Honours)
 - MATH 4822 [0.5] Wavelets and Digital Signal Processing (Honours)
 - STAT 4500 [0.5] Parametric Estimation (Honours)
 - STAT 4501 [0.5] Probability Theory (Honours)
 - STAT 4502 [0.5] Survey Sampling (Honours)
 - STAT 4503 [0.5] Applied Multivariate Analysis (Honours)
 - STAT 4504 [0.5] Statistical Design and Analysis of Experiments (Honours)
 - STAT 4507 [0.5] Statistical Inference (Honours)
 - STAT 4508 [0.5] Stochastic Models (Honours)
 - STAT 4509 [0.5] Advanced Mathematical Modeling (Honours)
 - STAT 4555 [0.5] Monte Carlo Simulation (Honours)
 - STAT 4601 [0.5] Data Mining I (Honours)
 - STAT 4603 [0.5] Time Series and Forecasting (Honours)
 - STAT 4604 [0.5] Statistical Computing (Honours)

Total Credits: 20.0
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 2655</td>
<td>Introduction to Probability with Applications</td>
<td>0.5</td>
</tr>
<tr>
<td>COMP 1405</td>
<td>Introduction to Computer Science I</td>
<td>0.5</td>
</tr>
<tr>
<td>COMP 1406</td>
<td>Introduction to Computer Science II</td>
<td>0.5</td>
</tr>
<tr>
<td>COMP 2401</td>
<td>Introduction to Systems Programming</td>
<td></td>
</tr>
<tr>
<td>COMP 2402</td>
<td>Abstract Data Types and Algorithms</td>
<td></td>
</tr>
</tbody>
</table>

2. One of the concentrations described below, also included in the Major CGPA:

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>3. 0.5 credit in:</td>
</tr>
<tr>
<td></td>
<td>MATH 4905 [0.5] Honours Project (Honours)</td>
</tr>
<tr>
<td>B. Credits Not Included in the Major CGPA (6.0 credits)</td>
<td></td>
</tr>
<tr>
<td>4. 1.0 credit in Natural Science electives at the 1000 level or above</td>
<td></td>
</tr>
<tr>
<td>5. 2.0 credits in Approved Arts or Social Sciences Electives</td>
<td></td>
</tr>
<tr>
<td>6. 1.0 credit at the 2000 level or above in Natural Science or Approved Arts or Social Sciences Electives</td>
<td></td>
</tr>
<tr>
<td>7. 2.0 credits in free electives</td>
<td></td>
</tr>
</tbody>
</table>

Total Credits 20.0

Concentration in Applied Analysis (6.5 credits)

Requirements:

2a. 3.0 credits in:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2100</td>
<td>Algebra II (Honours)</td>
<td>1.0</td>
</tr>
<tr>
<td>MATH 3008</td>
<td>Ordinary Differential Equations (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>MATH 3057</td>
<td>Functions of a Complex Variable (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>MATH 3806</td>
<td>Numerical Analysis (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>MATH 3855</td>
<td>Discrete Structures and Applications (Honours)</td>
<td>0.5</td>
</tr>
</tbody>
</table>

2b. 1.0 credit from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 4700</td>
<td>Partial Differential Equations (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>MATH 4701</td>
<td>Topics in Differential Equations (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>MATH 4703</td>
<td>Dynamical Systems (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>MATH 4708</td>
<td>Asymptotic Methods of Applied Mathematics (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>MATH 4806</td>
<td>Numerical Linear Algebra (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>MATH 4816</td>
<td>Numerical Analysis for Differential Equations (Honours)</td>
<td>0.5</td>
</tr>
</tbody>
</table>

2c. 0.5 credit in MATH at the 4000 level

2d. 2.0 credits in MATH or STAT at the 3000 level or above

Total Credits 6.5

Concentration in Discrete Mathematics (6.5 credits)

Requirements:

2a. 3.0 credits in:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2100</td>
<td>Algebra II (Honours)</td>
<td>1.0</td>
</tr>
<tr>
<td>MATH 3801</td>
<td>Linear Programming</td>
<td>0.5</td>
</tr>
<tr>
<td>MATH 3802</td>
<td>Combinatorial Optimization</td>
<td>0.5</td>
</tr>
<tr>
<td>MATH 3806</td>
<td>Numerical Analysis (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>MATH 3855</td>
<td>Discrete Structures and Applications (Honours)</td>
<td>0.5</td>
</tr>
</tbody>
</table>

2b. 1.0 credit from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 4109</td>
<td>Fields and Coding Theory (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>MATH 4801</td>
<td>Topics in Combinatorics (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>MATH 4802</td>
<td>Introduction to Mathematical Logic (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>MATH 4803</td>
<td>Computable Functions (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>MATH 4805</td>
<td>Theory of Automata (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>MATH 4807</td>
<td>Game Theory (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>MATH 4808</td>
<td>Graph Theory and Algorithms (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>MATH 4811</td>
<td>Combinatorial Design Theory (Honours)</td>
<td>0.5</td>
</tr>
</tbody>
</table>

2c. 0.5 credit in MATH at the 4000 level

2d. 2.0 credits in MATH or STAT at the 3000 level or above

Total Credits 6.5

Statistics

B. Math. Honours (20.0 credits)

A. Credits Included in the Major CGPA (12.5 credits)

1. 2.5 credits in:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1002</td>
<td>Calculus and Introductory Analysis I</td>
<td>1.0</td>
</tr>
<tr>
<td>MATH 1102</td>
<td>Algebra I</td>
<td>1.0</td>
</tr>
<tr>
<td>MATH 1800</td>
<td>Introduction to Mathematical Reasoning</td>
<td>1.0</td>
</tr>
</tbody>
</table>

2. 1.0 credit in:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1005</td>
<td>Introduction to Computer Science I</td>
<td>0.5</td>
</tr>
<tr>
<td>COMP 1006</td>
<td>Introduction to Computer Science II</td>
<td>0.5</td>
</tr>
</tbody>
</table>

3. 6.0 credits in:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 4500</td>
<td>Parametric Estimation (Honours)</td>
<td>1.5</td>
</tr>
<tr>
<td>STAT 4502</td>
<td>Survey Sampling (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>STAT 4503</td>
<td>Applied Multivariate Analysis (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>STAT 4504</td>
<td>Statistical Design and Analysis of Experiments (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>STAT 4506</td>
<td>Nonparametric Methods (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>STAT 4508</td>
<td>Stochastic Models (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>STAT 4509</td>
<td>Advanced Mathematical Modeling (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>STAT 4555</td>
<td>Monte Carlo Simulation (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>STAT 4601</td>
<td>Data Mining I (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>STAT 4603</td>
<td>Time Series and Forecasting (Honours)</td>
<td>0.5</td>
</tr>
<tr>
<td>STAT 4604</td>
<td>Statistical Computing (Honours)</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Total Credits 6.5
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2000 [1.0]</td>
<td>Calculus and Introductory Analysis II (Honours)</td>
</tr>
<tr>
<td>MATH 2454 [0.5]</td>
<td>Ordinary Differential Equations (Honours)</td>
</tr>
<tr>
<td>STAT 2559 [0.5]</td>
<td>Basics of Statistical Modeling (Honours)</td>
</tr>
<tr>
<td>STAT 2655 [0.5]</td>
<td>Introduction to Probability with Applications (Honours)</td>
</tr>
<tr>
<td>STAT 3506 [0.5]</td>
<td>Stochastic Processes and Applications (Honours)</td>
</tr>
<tr>
<td>STAT 3553 [0.5]</td>
<td>Regression Modeling (Honours)</td>
</tr>
<tr>
<td>STAT 3558 [0.5]</td>
<td>Elements of Probability Theory (Honours)</td>
</tr>
<tr>
<td>STAT 3559 [0.5]</td>
<td>Mathematical Statistics (Honours)</td>
</tr>
<tr>
<td>MATH 3806 [0.5]</td>
<td>Numerical Analysis (Honours)</td>
</tr>
<tr>
<td>STAT 4500 [0.5]</td>
<td>Parametric Estimation (Honours)</td>
</tr>
<tr>
<td>MATH 4905 [0.5]</td>
<td>Honours Project (Honours)</td>
</tr>
</tbody>
</table>

4. **1.0 credit from:**
 - MATH 2100 [1.0] Algebra II (Honours)
 - or
 - MATH 3107 [0.5] Linear Algebra III

and **0.5 credit from:**
 - 3000-level Honours Sequence, or:
 - MATH 3705 [0.5] Mathematical Methods I
 - MATH 3801 [0.5] Linear Programming
 - MATH 3807 [0.5] Mathematical Software (Honours)
 - MATH 3809 [0.5] Introduction to Number Theory and Cryptography
 - or Mathematics or Statistics at the 4000-level or higher

5. **0.5 credit from** the 3000-level Honours Sequence or MATH or STAT at the 4000-level or higher

6. **1.5 credits in** MATH or STAT at the 4000-level

B. Credits Not Included in the Major CGPA (7.5 credits):

7. **4.0 credits not in** MATH, STAT or COMP, consisting of:
 - a. **1.0 credit in** Natural Science Electives
 - b. 2.0 credits in Approved Arts or Social Sciences Electives
 - c. **1.0 credit at the 2000-level or higher, in Natural Science Electives or in Approved Arts or Social Sciences Electives**

8. **3.5 credits in** free electives

Total Credits 20.0

Statistics with Concentration in Actuarial Science

B. Math. Honours (20.0 credits):

A. **Credits Included in the Major CGPA (13.0 credits):**

1. **2.5 credits in:**
 - MATH 1002 [1.0] Calculus and Introductory Analysis I
 - MATH 1102 [1.0] Algebra I
 - MATH 1800 [0.5] Introduction to Mathematical Reasoning

2. **1.0 credit in:**
 - COMP 1005 [0.5] Introduction to Computer Science I
 - COMP 1006 [0.5] Introduction to Computer Science II

3. **6.5 credits in:**
 - MATH 2000 [1.0] Calculus and Introductory Analysis II (Honours)
 - MATH 2454 [0.5] Ordinary Differential Equations (Honours)
 - STAT 2559 [0.5] Basics of Statistical Modeling (Honours)
 - STAT 2655 [0.5] Introduction to Probability with Applications (Honours)
 - STAT 2660 [0.5] Mathematics for Finance (Honours)
 - STAT 3506 [0.5] Stochastic Processes and Applications (Honours)
 - STAT 3553 [0.5] Regression Modeling (Honours)
 - STAT 3558 [0.5] Elements of Probability Theory (Honours)
 - STAT 3559 [0.5] Mathematical Statistics (Honours)
 - MATH 3806 [0.5] Numerical Analysis (Honours)
 - STAT 4500 [0.5] Parametric Estimation (Honours)
 - MATH 4905 [0.5] Honours Project (Honours)

4. **1.0 credit from:**
 - MATH 2100 [1.0] Algebra II (Honours)
 - or
 - MATH 3107 [0.5] Linear Algebra III

and **0.5 credit from:**
 - 3000-level Honours Sequence, or:
 - MATH 3705 [0.5] Mathematical Methods I
 - MATH 3801 [0.5] Linear Programming
 - MATH 3807 [0.5] Mathematical Software (Honours)
 - MATH 3809 [0.5] Introduction to Number Theory and Cryptography

or Mathematics or Statistics at the 4000-level or higher

5. **0.5 credit from** the 3000-level Honours Sequence or MATH or STAT at the 4000-level or higher

6. **1.5 credits in:**
 - STAT 4508 [0.5] Stochastic Models (Honours)
 - STAT 4603 [0.5] Time Series and Forecasting (Honours)
 - or
 - STAT 4555 [0.5] Monte Carlo Simulation (Honours)
 - or STAT at the 4000-level

B. **Credits Not Included in the Major CGPA (7.0 credits):**

7. **3.0 credits in:**
 - BUSI 1001 [0.5] Principles of Financial Accounting
 - BUSI 1002 [0.5] Management Accounting
 - ECON 1000 [1.0] Introduction to Economics
 - ECON 2020 [0.5] Intermediate Microeconomics I: Producers and Market Structure
 - ECON 2102 [0.5] Intermediate Macroeconomics I

8. **2.5 credits in:**
 - BUSI 2504 [0.5] Business Finance I
 - BUSI 2505 [0.5] Business Finance II
 - BUSI 3500 [0.5] Applied Corporate Finance
 - BUSI 3502 [0.5] Investments
 - BUSI 3512 [0.5] Derivatives
 - or
 - ECON 2030 [0.5] Intermediate Microeconomics II: Consumers and General Equilibrium
 - ECON 3050 [0.5] Introduction to Financial Economics
 - ECON 4051 [0.5] Financial Asset Pricing
 - ECON 4052 [0.5] Corporate Financial Economics
and one of:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECON 2103</td>
<td>Intermediate Macroeconomics II</td>
</tr>
<tr>
<td>ECON 3607</td>
<td>Monetary and Financial Institutions</td>
</tr>
<tr>
<td>ECON 4053</td>
<td>Financial Market Modeling</td>
</tr>
</tbody>
</table>

9. **1.0 credit in Natural Science electives** 1.0

10. **0.5 credit in free electives** 0.5

Total Credits 20.0

Mathematics

B. Math. General (15.0 credits)

A. Credits Included in the Major CGPA (7.5 credits)

1. **2.5 credits in:**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1002</td>
<td>Calculus and Introductory Analysis I</td>
</tr>
<tr>
<td>MATH 1102</td>
<td>Algebra I</td>
</tr>
<tr>
<td>MATH 1800</td>
<td>Introduction to Mathematical Reasoning</td>
</tr>
</tbody>
</table>

2. **2.0 credits in:**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2008</td>
<td>Intermediate Calculus</td>
</tr>
<tr>
<td>MATH 2108</td>
<td>Abstract Algebra I</td>
</tr>
<tr>
<td>MATH 2404</td>
<td>Ordinary Differential Equations I</td>
</tr>
<tr>
<td>STAT 2507</td>
<td>Introduction to Statistical Modeling I</td>
</tr>
</tbody>
</table>

3. **3.0 credits from:**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 2509</td>
<td>Introduction to Statistical Modeling II</td>
</tr>
</tbody>
</table>

Excluding:

- MATH 3101 [0.5] Algebraic Structures with Computer Applications
- STAT 3502 [0.5] Probability and Statistics

B. Credits Not Included in the Major CGPA (7.5 credits)

4. **4.0 credits not in MATH, STAT or COMP, consisting of:**

a. **1.0 credit in Natural Science Electives**

b. **2.0 credits in approved courses outside the faculties of Science and Engineering and Design**

- c. **1.0 credit at the 2000-level or higher, in Natural Science Electives or in Approved Arts or Social Sciences Electives**

5. **3.5 credits in free electives** 3.5

Total Credits 15.0

Computer Mathematics

B. Math. General (15.0 credits)

A. Credits Included in the Major CGPA (10.5 credits)

1. **2.5 credits in:**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1002</td>
<td>Calculus and Introductory Analysis I</td>
</tr>
<tr>
<td>MATH 1102</td>
<td>Algebra I</td>
</tr>
<tr>
<td>MATH 1800</td>
<td>Introduction to Mathematical Reasoning</td>
</tr>
</tbody>
</table>

2. **2.5 credits in:**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1005</td>
<td>Introduction to Computer Science I</td>
</tr>
<tr>
<td>COMP 1006</td>
<td>Introduction to Computer Science II</td>
</tr>
<tr>
<td>COMP 2401</td>
<td>Introduction to Systems Programming</td>
</tr>
<tr>
<td>COMP 2402</td>
<td>Abstract Data Types and Algorithms</td>
</tr>
<tr>
<td>COMP 2404</td>
<td>Introduction to Software Engineering</td>
</tr>
</tbody>
</table>

3. **2.5 credits in:**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2008</td>
<td>Intermediate Calculus</td>
</tr>
<tr>
<td>STAT 2507</td>
<td>Introduction to Statistical Modeling I</td>
</tr>
<tr>
<td>STAT 2605</td>
<td>Probability Models</td>
</tr>
<tr>
<td>MATH 3804</td>
<td>Design and Analysis of Algorithms I</td>
</tr>
<tr>
<td>MATH 3825</td>
<td>Discrete Analysis of Algorithms and Applications</td>
</tr>
</tbody>
</table>

4. **0.5 credit from:**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2108</td>
<td>Abstract Algebra I</td>
</tr>
<tr>
<td>MATH 3101</td>
<td>Algebraic Structures with Computer Applications</td>
</tr>
</tbody>
</table>

5. **1.0 credit from:**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3801</td>
<td>Linear Programming</td>
</tr>
<tr>
<td>MATH 3802</td>
<td>Combinatorial Optimization</td>
</tr>
<tr>
<td>MATH 3806</td>
<td>Numerical Analysis (Honours)</td>
</tr>
<tr>
<td>MATH 3807</td>
<td>Mathematical Software (Honours)</td>
</tr>
<tr>
<td>MATH 3809</td>
<td>Introduction to Number Theory and Cryptography</td>
</tr>
</tbody>
</table>

6. **1.0 credit in MATH or STAT at the 3000-level** 1.0

Excluding:

- STAT 3502 [0.5] Probability and Statistics

7. **0.5 credit in MATH or STAT at the 2000-level or higher** 0.5

B. Credits Not Included in the Major CGPA (4.5 credits)

8. **4.0 credits not in MATH, STAT or COMP, consisting of:**

a. **1.0 credit in Natural Science Electives**

b. **2.0 credits in approved courses outside the faculties of Science and Engineering and Design**

- c. **1.0 credit at the 2000-level or higher, in Natural Science Electives or in Approved Arts or Social Sciences Electives**

9. **0.5 credit in free electives** 0.5

Total Credits 15.0

Statistics

B. Math. General (15.0 credits)

A. Credits Included in the Major CGPA (7.5 credits)

1. **2.5 credits in:**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1002</td>
<td>Calculus and Introductory Analysis I</td>
</tr>
<tr>
<td>MATH 1102</td>
<td>Algebra I</td>
</tr>
<tr>
<td>MATH 1800</td>
<td>Introduction to Mathematical Reasoning</td>
</tr>
</tbody>
</table>

2. **4.0 credits in:**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2008</td>
<td>Intermediate Calculus</td>
</tr>
<tr>
<td>STAT 2507</td>
<td>Introduction to Statistical Modeling I</td>
</tr>
<tr>
<td>STAT 2509</td>
<td>Introduction to Statistical Modeling II</td>
</tr>
<tr>
<td>STAT 3503</td>
<td>Regression Analysis</td>
</tr>
<tr>
<td>STAT 3504</td>
<td>Analysis of Variance and Experimental Design</td>
</tr>
<tr>
<td>STAT 3507</td>
<td>Sampling Methodology</td>
</tr>
<tr>
<td>STAT 3508</td>
<td>Elements of Probability Theory</td>
</tr>
<tr>
<td>STAT 3509</td>
<td>Mathematical Statistics</td>
</tr>
</tbody>
</table>

3. **0.5 credit from:**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1005</td>
<td>Introduction to Computer Science I</td>
</tr>
<tr>
<td>BUSI 1402</td>
<td>Introduction to Business Information and Communication Technologies</td>
</tr>
<tr>
<td>ECOR 1606</td>
<td>Problem Solving and Computers</td>
</tr>
</tbody>
</table>

Total Credits 15.0
4. 0.5 credit in 2000-level MATH or STAT

B. Credits Not Included in the Major CGPA (7.5 credits)

5. 4.0 credits not in MATH, STAT or COMP, consisting of:
 a. 1.0 credit in Natural Science Electives
 b. 2.0 credits in Approved Arts or Social Sciences Electives
 c. 1.0 credit at the 2000-level or higher, in Natural Science Electives or in Approved Arts or Social Sciences Electives

6. 3.5 credits in free electives

| Total Credits | 15.0 |

Computer Science and Mathematics: Concentration in Computing Theory and Numerical Methods

B. Math. Combined Honours (20.0 credits)

A. Credits Included in the Major CGPA (16.0 credits)

1. 4.5 credits in:
 - MATH 1002 [1.0] Calculus and Introductory Analysis I
 - MATH 1102 [1.0] Algebra I
 - MATH 1800 [0.5] Introduction to Mathematical Reasoning
 - MATH 2000 [1.0] Calculus and Introductory Analysis II (Honours)
 - MATH 2100 [1.0] Algebra II (Honours)

2. 6.0 credits in:
 - COMP 1405 [0.5] Introduction to Computer Science I
 - COMP 1406 [0.5] Introduction to Computer Science II
 - COMP 2401 [0.5] Introduction to Systems Programming
 - COMP 2402 [0.5] Abstract Data Types and Algorithms
 - COMP 2404 [0.5] Introduction to Software Engineering
 - COMP 2406 [0.5] Fundamentals of Web Applications
 - COMP 2804 [0.5] Discrete Structures II
 - COMP 3000 [0.5] Operating Systems
 - COMP 3004 [0.5] Object-Oriented Software Engineering
 - COMP 3005 [0.5] Database Management Systems
 - COMP 3804 [0.5] Design and Analysis of Algorithms I
 - COMP 3805 [0.5] Discrete Structures and Applications (Honours)

3. 0.5 credit from:
 - COMP 4905 [0.5] Honours Project
 - MATH 4905 [0.5] Honours Project (Honours)
 - Concentration in Computing Theory and Numerical Methods

4. 3.0 credits from:
 - MATH 2454 [0.5] Ordinary Differential Equations (Honours)
 - STAT 2559 [0.5] Basics of Statistical Modeling (Honours)
 - STAT 2655 [0.5] Introduction to Probability with Applications (Honours)
 - MATH 3801 [0.5] Linear Programming
 - MATH 3806 [0.5] Numerical Analysis (Honours)
 - COMP 4804 [0.5] Design and Analysis of Algorithms II

5. 0.5 credit from:
 - MATH 3001 [0.5] Real Analysis I (Honours)
 - MATH 3002 [0.5] Real Analysis II (Honours)
 - MATH 3003 [0.5] Advanced Differential Calculus (Honours)
 - MATH 3057 [0.5] Functions of a Complex Variable (Honours)
 - MATH 3008 [0.5] Ordinary Differential Equations (Honours)

6. 1.0 credit from:
 - MATH 4109 [0.5] Fields and Coding Theory (Honours)
 - MATH 4801 [0.5] Topics in Combinatorics (Honours)
 - MATH 4802 [0.5] Introduction to Mathematical Logic (Honours)
 - MATH 4803 [0.5] Computable Functions (Honours)
 - MATH 4805 [0.5] Theory of Automata (Honours)
 - MATH 4806 [0.5] Numerical Linear Algebra (Honours)
 - MATH 4807 [0.5] Game Theory (Honours)
 - MATH 4808 [0.5] Graph Theory and Algorithms (Honours)
 - MATH 4811 [0.5] Combinatorial Design Theory (Honours)
 - MATH 4816 [0.5] Numerical Analysis for Differential Equations (Honours)
 - MATH 4821 [0.5] Quantum Computing (Honours)
 - MATH 4822 [0.5] Wavelets and Digital Signal Processing (Honours)

7. 0.5 credit in COMP at the 3000-level or above.

B. Credits Not Included in the Major CGPA (4.0 credits)

8. 4.0 credits not in MATH, STAT, or COMP consisting of:
 a. 1.0 credit in Natural Science electives
 b. 2.0 credits in Approved Arts or Social Sciences Electives
 c. 1.0 credit at the 2000-level or higher in Natural Science electives or in Approved Arts or Social Sciences Electives

| Total Credits | 20.0 |

Note:

The following courses offered by the School of Business and the Faculty of Engineering are treated as Computer Science courses in this program:

Business
- BUSI 2400 [0.5] Foundations of Information Systems
- BUSI 4400 [0.5] IS Strategy, Management and Acquisition
- BUSI 4402 [0.5] Information Systems Practicum
- BUSI 4406 [0.5] Business Analytics

Engineering
- SYSC 3303 [0.5] Real-Time Concurrent Systems
- SYSC 4005 [0.5] Discrete Simulation/Modeling
- SYSC 4507 [0.5] Computer Systems Architecture
Computer Science and Mathematics:
Concentration in Statistics and Computing

B. Math. Combined Honours (20.0 credits)

A. Credits Included in the Major CGPA (16.0 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1002</td>
<td>1.0</td>
<td>Calculus and Introductory Analysis I</td>
</tr>
<tr>
<td>MATH 1102</td>
<td>1.0</td>
<td>Algebra I</td>
</tr>
<tr>
<td>MATH 1800</td>
<td>0.5</td>
<td>Introduction to Mathematical Reasoning</td>
</tr>
<tr>
<td>MATH 2000</td>
<td>1.0</td>
<td>Calculus and Introductory Analysis II (Honours)</td>
</tr>
<tr>
<td>MATH 2100</td>
<td>1.0</td>
<td>Algebra II (Honours)</td>
</tr>
</tbody>
</table>

1. 4.5 credits in:

2. 6.0 credits in:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1405</td>
<td>0.5</td>
<td>Introduction to Computer Science I</td>
</tr>
<tr>
<td>COMP 1406</td>
<td>0.5</td>
<td>Introduction to Computer Science II</td>
</tr>
<tr>
<td>COMP 2401</td>
<td>0.5</td>
<td>Introduction to Systems Programming</td>
</tr>
<tr>
<td>COMP 2402</td>
<td>0.5</td>
<td>Abstract Data Types and Algorithms</td>
</tr>
<tr>
<td>COMP 2404</td>
<td>0.5</td>
<td>Introduction to Software Engineering</td>
</tr>
<tr>
<td>COMP 2406</td>
<td>0.5</td>
<td>Fundamentals of Web Applications</td>
</tr>
<tr>
<td>COMP 2804</td>
<td>0.5</td>
<td>Discrete Structures II</td>
</tr>
<tr>
<td>COMP 3000</td>
<td>0.5</td>
<td>Operating Systems</td>
</tr>
<tr>
<td>COMP 3004</td>
<td>0.5</td>
<td>Object-Oriented Software Engineering</td>
</tr>
<tr>
<td>COMP 3005</td>
<td>0.5</td>
<td>Database Management Systems</td>
</tr>
<tr>
<td>COMP 3804</td>
<td>0.5</td>
<td>Design and Analysis of Algorithms I</td>
</tr>
<tr>
<td>COMP 3805</td>
<td>0.5</td>
<td>Discrete Structures and Applications (Honours)</td>
</tr>
</tbody>
</table>

3. 0.5 credit from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 4905</td>
<td>0.5</td>
<td>Honours Project</td>
</tr>
<tr>
<td>MATH 4905</td>
<td>0.5</td>
<td>Honours Project (Honours)</td>
</tr>
</tbody>
</table>

Concentration:

4. 3.0 credits in:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2454</td>
<td>0.5</td>
<td>Ordinary Differential Equations (Honours)</td>
</tr>
<tr>
<td>MATH 3806</td>
<td>0.5</td>
<td>Numerical Analysis (Honours)</td>
</tr>
<tr>
<td>STAT 2559</td>
<td>0.5</td>
<td>Basics of Statistical Modeling (Honours)</td>
</tr>
<tr>
<td>STAT 2655</td>
<td>0.5</td>
<td>Introduction to Probability with Applications (Honours)</td>
</tr>
<tr>
<td>STAT 3558</td>
<td>0.5</td>
<td>Elements of Probability Theory (Honours)</td>
</tr>
<tr>
<td>STAT 3559</td>
<td>0.5</td>
<td>Mathematical Statistics (Honours)</td>
</tr>
</tbody>
</table>

5. 0.5 credit from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 3506</td>
<td>0.5</td>
<td>Stochastic Processes and Applications (Honours)</td>
</tr>
<tr>
<td>STAT 3553</td>
<td>0.5</td>
<td>Regression Modeling (Honours)</td>
</tr>
</tbody>
</table>

6. 1.0 credit in STAT at the 4000-level:

7. 0.5 credit in COMP at the 4000-level:

B. Credits Not Included in the Major CGPA (4.0 credits)

8. 4.0 credits not in MATH, STAT, or COMP consisting of:

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0 credit in Natural Science electives</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0 credits in Approved Arts or Social Sciences Electives</td>
</tr>
</tbody>
</table>

c. 1.0 credit at the 2000-level or higher in Natural Science electives or in Approved Arts or Social Sciences Electives

Total Credits: 20.0

Mathematics and Physics
B.Sc. Double Honours (21.5 credits)

Note that the following courses have minimum grade requirements in their prerequisites. Refer to the section Course Prerequisites under the Mathematics and Statistics programs sections of the calendar.

A. Credits Included in the Major CGPA (17.0 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1002</td>
<td>1.0</td>
<td>Calculus and Introductory Analysis I</td>
</tr>
<tr>
<td>MATH 1102</td>
<td>1.0</td>
<td>Algebra I</td>
</tr>
<tr>
<td>MATH 1800</td>
<td>0.5</td>
<td>Introduction to Mathematical Reasoning</td>
</tr>
<tr>
<td>MATH 2000</td>
<td>1.0</td>
<td>Calculus and Introductory Analysis II (Honours)</td>
</tr>
<tr>
<td>MATH 2100</td>
<td>1.0</td>
<td>Algebra II (Honours)</td>
</tr>
<tr>
<td>MATH 2454</td>
<td>0.5</td>
<td>Ordinary Differential Equations (Honours)</td>
</tr>
<tr>
<td>STAT 2655</td>
<td>0.5</td>
<td>Introduction to Probability with Applications (Honours)</td>
</tr>
<tr>
<td>MATH 3705</td>
<td>0.5</td>
<td>Mathematical Methods I</td>
</tr>
<tr>
<td>MATH 3001</td>
<td>0.5</td>
<td>Real Analysis I (Honours)</td>
</tr>
<tr>
<td>MATH 3008</td>
<td>0.5</td>
<td>Ordinary Differential Equations (Honours)</td>
</tr>
<tr>
<td>MATH 3057</td>
<td>0.5</td>
<td>Functions of a Complex Variable (Honours)</td>
</tr>
</tbody>
</table>

2. 0.5 credit from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 3002</td>
<td>0.5</td>
<td>Real Analysis II (Honours)</td>
</tr>
<tr>
<td>MATH 3003</td>
<td>0.5</td>
<td>Advanced Differential Calculus (Honours)</td>
</tr>
<tr>
<td>MATH 3106</td>
<td>0.5</td>
<td>Introduction to Group Theory (Honours)</td>
</tr>
<tr>
<td>PHYS 3007</td>
<td>0.5</td>
<td>Third Year Physics Laboratory: Selected Experiments and Seminars</td>
</tr>
<tr>
<td>PHYS 3606</td>
<td>0.5</td>
<td>Modern Physics II</td>
</tr>
</tbody>
</table>

3. 1.0 credit in 4000-level or higher MATH, STAT:

4. 1.0 credit from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 1001</td>
<td>0.5</td>
<td>Foundations of Physics I</td>
</tr>
<tr>
<td>PHYS 1002</td>
<td>0.5</td>
<td>Foundations of Physics II (recommended)</td>
</tr>
<tr>
<td>PHYS 1003</td>
<td>0.5</td>
<td>Introductory Mechanics and Thermodynamics</td>
</tr>
<tr>
<td>PHYS 1004</td>
<td>0.5</td>
<td>Introductory Electromagnetism and Wave Motion</td>
</tr>
<tr>
<td>PHYS 1007</td>
<td>0.5</td>
<td>Elementary University Physics I</td>
</tr>
<tr>
<td>PHYS 1008</td>
<td>0.5</td>
<td>Elementary University Physics II (with an average grade of B- or higher)</td>
</tr>
</tbody>
</table>

5. 2.0 credits in:

Total Credits: 21.5
PHYS 2202 [0.5] Wave Motion and Optics
PHYS 2305 [0.5] Electricity and Magnetism
PHYS 2401 [0.5] Thermal Physics
PHYS 2604 [0.5] Modern Physics I
6. 3.0 credits in: 3.0
PHYS 3308 [0.5] Electromagnetism
PHYS 3701 [0.5] Elements of Quantum Mechanics
PHYS 3802 [0.5] Advanced Dynamics
PHYS 4409 [0.5] Thermodynamics and Statistical Physics
PHYS 4707 [0.5] Introduction to Quantum Mechanics I
PHYS 4708 [0.5] Introduction to Quantum Mechanics II
7. 1.0 credit in PHYS at the 4000-level 1.0
8. 1.0 credit from: 1.0
a. MATH 4905 or PHYS 4907 or PHYS 4908 plus 0.5 credit 4000-level MATH or PHYS
b. PHYS 4909 [1.0]
B. Credits Not Included in the Major CGPA (4.5 credits)
9. 1.0 credit from: 1.0
BIOL 1103 [0.5] Foundations of Biology I
& BIOL 1104 [0.5] Foundations of Biology II
CHEM 1001 [0.5] General Chemistry I
& CHEM 1002 [0.5] General Chemistry II
CHEM 1005 [0.5] Elementary Chemistry I
& CHEM 1006 [0.5] Elementary Chemistry II
ERTH 1006 [0.5] Exploring Planet Earth
& ERTH 1009 [0.5] The Earth System Through Time
10. 0.5 credit in: 0.5
COMP 1005 [0.5] Introduction to Computer Science I
11. 0.5 credit from: 0.5
NSCI 1000 [0.5] Seminar in Science
Approved courses outside the faculties of Science and Engineering and Design
12. 1.5 credits in approved courses outside the faculties of Science and Engineering and Design 1.5
13. 1.0 credit in free electives 1.0
Total Credits 21.5

Economics and Mathematics
B.Math. Combined Honours (20.0 credits)
A. Credits Included in the Major CGPA (15.5 credits)
1. 7.5 credits in: 7.5
MATH 1002 [1.0] Calculus and Introductory Analysis I
MATH 1102 [1.0] Algebra I
MATH 1800 [0.5] Introduction to Mathematical Reasoning
MATH 2000 [1.0] Calculus and Introductory Analysis II (Honours)
MATH 2100 [1.0] Algebra II (Honours)
MATH 2454 [0.5] Ordinary Differential Equations (Honours)
STAT 2655 [0.5] Introduction to Probability with Applications (Honours)
STAT 2559 [0.5] Basics of Statistical Modeling (Honours)
MATH 3001 [0.5] Real Analysis I (Honours)
STAT 3558 [0.5] Elements of Probability Theory (Honours)
STAT 3559 [0.5] Mathematical Statistics (Honours)
2. 0.5 credit from: 0.5
MATH 3002 [0.5] Real Analysis II (Honours)
MATH 3003 [0.5] Advanced Differential Calculus (Honours)
MATH 3008 [0.5] Ordinary Differential Equations (Honours)
3. 0.5 credit in: 0.5
MATH 4905 [0.5] Honours Project (Honours)
4. 1.0 credit in MATH or STAT at the 4000-level 1.0
5. 4.0 credits in: 4.0
ECON 1000 [1.0] Introduction to Economics
ECON 2020 [0.5] Intermediate Microeconomics I: Producers and Market Structure
ECON 2030 [0.5] Intermediate Microeconomics II: Consumers and General Equilibrium
ECON 2102 [0.5] Intermediate Macroeconomics I
ECON 2103 [0.5] Intermediate Macroeconomics II
ECON 4020 [0.5] Advanced Microeconomic Theory
ECON 4021 [0.5] Advanced Macroeconomic Theory
6. 2.0 credits in ECON at the 4000-level 2.0
B. Credits Not Included in the Major CGPA (4.5 credits)
8. 1.0 credit in: 1.0
COMP 1005 [0.5] Introduction to Computer Science I
COMP 1006 [0.5] Introduction to Computer Science II
9. 1.0 credit in Natural Science Electives 1.0
10. 2.5 credits in free electives 2.5
Total Credits 20.0

Notes:
1. An Honours Essay (ECON 4908 [1.0]) may be written by students with Overall and Major CGPAS of 9.50 or higher. In cases where a grade of B- or higher is earned on this essay, it may count for 1.0 credit in ECON at the 4000-level. Qualified students who choose to pursue the Honours Essay option must first complete an Honours Essay prospectus to the satisfaction of both their adviser and the Department of Economics Undergraduate Supervisor.
2. The following courses do not count for credit in this program: ECON 1401, ECON 1402, ECON 2201 (no longer offered), ECON 2202 (no longer offered), ECON 2210, ECON 2220, ECON 2400 (no longer offered), ECON 3001, ECON 4001, ECON 4002, ECON 4004, ECON 4025, ECON 4706, ECON 4707, and ECON 4713.

Economics and Statistics
B.Math. Combined Honours (20.0 credits)
A. Credits Included in the Major CGPA (15.5 credits)
1. 8.5 credits in: 8.5
MATH 1002 [1.0] Calculus and Introductory Analysis I
MATH 1102 [1.0] Algebra I
MATH 1800 [0.5] Introduction to Mathematical Reasoning
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 2000 [1.0]</td>
<td>Calculus and Introductory Analysis II (Honours)</td>
</tr>
<tr>
<td>MATH 2454 [0.5]</td>
<td>Ordinary Differential Equations (Honours)</td>
</tr>
<tr>
<td>STAT 2655 [0.5]</td>
<td>Introduction to Probability with Applications (Honours)</td>
</tr>
<tr>
<td>STAT 2559 [0.5]</td>
<td>Basics of Statistical Modeling (Honours)</td>
</tr>
<tr>
<td>MATH 3107 [0.5]</td>
<td>Linear Algebra III</td>
</tr>
<tr>
<td>STAT 3506 [0.5]</td>
<td>Stochastic Processes and Applications (Honours)</td>
</tr>
<tr>
<td>STAT 3553 [0.5]</td>
<td>Regression Modeling (Honours)</td>
</tr>
<tr>
<td>STAT 3558 [0.5]</td>
<td>Elements of Probability Theory (Honours)</td>
</tr>
<tr>
<td>STAT 3559 [0.5]</td>
<td>Mathematical Statistics (Honours)</td>
</tr>
<tr>
<td>STAT 4502 [0.5]</td>
<td>Sampling Surveying (Honours)</td>
</tr>
<tr>
<td>STAT 4503 [0.5]</td>
<td>Applied Multivariate Analysis (Honours)</td>
</tr>
<tr>
<td>ECON 1000 [1.0]</td>
<td>Introduction to Economics</td>
</tr>
<tr>
<td>ECON 2020 [0.5]</td>
<td>Intermediate Microeconomics I: Producers and Market Structure</td>
</tr>
<tr>
<td>ECON 2030 [0.5]</td>
<td>Intermediate Microeconomics II: Consumers and General Equilibrium</td>
</tr>
<tr>
<td>ECON 2102 [0.5]</td>
<td>Intermediate Macroeconomics I</td>
</tr>
<tr>
<td>ECON 2103 [0.5]</td>
<td>Intermediate Macroeconomics II</td>
</tr>
<tr>
<td>ECON 4020 [0.5]</td>
<td>Advanced Microeconomic Theory</td>
</tr>
<tr>
<td>ECON 4021 [0.5]</td>
<td>Advanced Macroeconomic Theory</td>
</tr>
<tr>
<td>COMP 1005 [0.5]</td>
<td>Introduction to Computer Science I</td>
</tr>
<tr>
<td>COMP 1006 [0.5]</td>
<td>Introduction to Computer Science II</td>
</tr>
</tbody>
</table>

Program Requirements for Combined B.Math./M.Sc.

This "fast-track" program combines the requirements for Bachelor of Mathematics in Mathematics or Statistics, and Master of Science in Mathematics, into a sequence that will enable exceptional students to complete in four years of study.

Entry to this program directly from an Ontario High School requires both of the following:

1. an average of 90 per cent or better on Grade 12 Mathematics: Advanced Functions and Grade 12 Mathematics: Calculus and Vectors;
2. an average of 85 per cent or better over six credits in Grade 12 courses of University or University/College type.

Admission, continuation and graduation from the undergraduate portion of the program requires a Major CGPA of 11.0 or better and Overall CGPA of 10.00 or better.

Before entry into the fourth year of this program, students must: obtain a recommendation from the School of Mathematics and Statistics to continue, apply to graduate with a B.Math. General degree, by the end of January of their third year, and submit an application for graduate studies to the School by mid-February.

Undergraduate Portion

Students may apply for admission to either the Mathematics or the Statistics versions of the program.

Mathematics (Combined B.Math./M.Sc.)

B.Math. (15.0 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1002 [1.0]</td>
<td>Calculus and Introductory Analysis I</td>
</tr>
<tr>
<td>MATH 1102 [1.0]</td>
<td>Algebra I</td>
</tr>
<tr>
<td>MATH 1800 [0.5]</td>
<td>Introduction to Mathematical Reasoning</td>
</tr>
<tr>
<td>MATH 2000 [1.0]</td>
<td>Calculus and Introductory Analysis II (Honours)</td>
</tr>
<tr>
<td>MATH 2100 [1.0]</td>
<td>Algebra II (Honours)</td>
</tr>
<tr>
<td>MATH 2454 [0.5]</td>
<td>Ordinary Differential Equations (Honours)</td>
</tr>
<tr>
<td>STAT 2655 [0.5]</td>
<td>Introduction to Probability with Applications (Honours)</td>
</tr>
<tr>
<td>MATH 3001 [0.5]</td>
<td>Real Analysis I (Honours)</td>
</tr>
<tr>
<td>MATH 3057 [0.5]</td>
<td>Functions of a Complex Variable (Honours)</td>
</tr>
<tr>
<td>MATH 3106 [0.5]</td>
<td>Introduction to Group Theory (Honours)</td>
</tr>
<tr>
<td>MATH 3158 [0.5]</td>
<td>Rings and Fields (Honours)</td>
</tr>
<tr>
<td>MATH 3002 [0.5]</td>
<td>Real Analysis II (Honours)</td>
</tr>
<tr>
<td>MATH 3003 [0.5]</td>
<td>Advanced Differential Calculus (Honours)</td>
</tr>
</tbody>
</table>

Notes:

1. An Honours Essay (ECON 4908 [1.0]) may be written by students with Overall and Major CGPAs of 9.50 or higher. In cases where a grade of B- or higher is earned on this essay, it may count for 1.0 credit in ECON at the 4000-level. Qualified students who choose to pursue the Honours Essay option must first complete an Honours Essay prospectus to the satisfaction of both their adviser and the Department of Economics Undergraduate Supervisor.
2. MATH 2100 [1.0] may replace MATH 3107 and 0.5 credit in free electives in this program.
3. The following courses do not count for credit in this program: ECON 1401, ECON 1402, ECON 2201 (no longer offered), ECON 2202 (no longer offered), ECON 2210, ECON 2220, ECON 2400 (no longer offered), ECON 3001, ECON 4001, ECON 4002, ECON 4004, ECON 4025, ECON 4706, ECON 4707, and ECON 4713.
MATH 3008 [0.5] Ordinary Differential Equations (Honours)

3. 0.5 credit from 3000-level Honours Sequence or MATH or STAT at the 4000-level or higher 0.5

4. 1.5 credits at the 4000-level or higher in MATH or STAT 1.5

B. Credits Not Included in the Major CGPA (5.0 credits)

5. 4.0 credits not in MATH, STAT or COMP, consisting of: 4.0
 a. 1.0 credit in Natural Science Electives
 b. 2.0 credits in Approved Arts or Social Sciences Electives
 c. 1.0 credit at the 2000-level or higher, in Natural Science Electives or in Approved Arts or Social Sciences Electives

6. 1.0 credit in free electives 1.0

Total Credits 15.0

Students wishing to specialize in Stochastics may, with the permission of the School, replace Credits Included in the Major CGPA of the Mathematics version with:

1. 6.0 credits in:
 MATH 1002 [1.0] Calculus and Introductory Analysis I
 MATH 1102 [1.0] Algebra I
 MATH 1800 [0.5] Introduction to Mathematical Reasoning
 MATH 2000 [1.0] Calculus and Introductory Analysis II (Honours)
 MATH 2100 [1.0] Algebra II (Honours)
 MATH 2454 [0.5] Ordinary Differential Equations (Honours)
 STAT 2559 [0.5] Basics of Statistical Modeling (Honours)
 STAT 2655 [0.5] Introduction to Probability with Applications (Honours)
 MATH 3001 [0.5] Real Analysis I (Honours)
 STAT 3506 [0.5] Stochastic Processes and Applications (Honours)
 STAT 3553 [0.5] Regression Modeling (Honours)
 STAT 3558 [0.5] Elements of Probability Theory (Honours)
 STAT 3559 [0.5] Mathematical Statistics (Honours)

2. 1.5 credits at the 4000-level or higher in Mathematics or Statistics 1.5

Graduate Portion - M.Sc.
During the graduate portion of the "fast-track" program, the student is registered as a graduate student and is covered by the regulations of the Faculty of Graduate Studies.

5. 1.5 credits at the 5000-level or higher in MATH or STAT 1.5

6. 1.0 credit at the 5000-level or higher in mathematics or statistics or from another department or school 1.0

7. Either:
 MATH 4905 and 1.5 credits in MATH or STAT at the 5000-level or higher
 or
 an M.Sc. thesis in Mathematics

Total Credits 4.5

Minor in Mathematics (4.0 credits)
This minor is open to students in all undergraduate programs except programs of the School of Mathematics and Statistics.

Requirements

1. 1.0 credit from:
 MATH 1007 [0.5] & MATH 2007 [0.5] Elementary Calculus I
 & MATH 1004 [0.5] & MATH 2005 [0.5] Calculus for Engineering or Physics
 or
 MATH 1001 [0.5] Calculus and Introductory Analysis I
 MATH 2001 [0.5] Calculus for Engineering or Physics

Total Credits 4.0
1. Item 1 above may be satisfied by credit in MATH 1002. Item 2 may be satisfied by credit in MATH 1102.

2. With approval an alternate introductory statistics course may be used to satisfy Item 3 above.

Mathematics (MATH) Courses

Note:
- See also the course listings under Statistics (STAT) in this Calendar.

Prerequisites for First-year Mathematics Courses in B.Math. Programs

Students who do not have the required Ontario Grade 12 Mathematics courses or equivalents may take MATH 0005 Precalculus: Functions and Graphs and MATH 0006 Precalculus: Trigonometric Functions and Complex Numbers in lieu of Advanced Functions, MATH 0107 Algebra and Geometry in lieu of the algebra component of Calculus and Vectors. These 0000-level mathematics courses serve as alternate prerequisites for MATH 1002 [1.0] Calculus and Introductory Analysis I and MATH 1102 [1.0] Algebra I. These courses would be in addition to the minimum 15.0 credits required in General programs, or 20.0 credits required in Honours programs.

MATH 0005 [0.5 credit]

Precalculus: Functions and Graphs

Prerequisite(s): Grade 11 Functions (University/College Preparation), or equivalent.

Lectures three hours a week, tutorial one hour a week.

MATH 0006 [0.5 credit]

Precalculus: Trigonometric Functions and Complex Numbers

Prerequisite(s): Grade 11 Functions (University/College Preparation), or MATH 0005, or equivalent.

Lectures three hours a week, tutorial one hour a week.

Minor in Statistics (4.0 credits)

This minor is open to students in all undergraduate programs except programs of the School of Mathematics and Statistics.

Requirements:

1. **0.5 credit from:**
 - MATH 1004 [0.5] Calculus for Engineering or Physics
 - MATH 1007 [0.5] Elementary Calculus I
 - MATH 1009 [0.5] Calculus: with Applications to Business

2. **0.5 credit from:**
 - MATH 1104 [0.5] Linear Algebra for Engineering or Science
 - MATH 1107 [0.5] Linear Algebra I
 - MATH 1119 [0.5] Linear Algebra: with Applications to Business

3. **1.0 credit in MATH at the 2000-level or higher**
 - STAT 2507 [0.5] Introduction to Statistical Modeling I
 - STAT 2509 [0.5] Introduction to Statistical Modeling II
 - STAT 3502 [0.5] Probability and Statistics
 - STAT 2509 [0.5] Introduction to Statistical Modeling II

4. **1.5 credits in:**
 - STAT 3503 [0.5] Regression Analysis
 - STAT 3504 [0.5] Analysis of Variance and Experimental Design
 - STAT 3507 [0.5] Sampling Methodology

5. **0.5 credit from:**
 - COMP 1005 [0.5] Introduction to Computer Science I
 - BUSI 1402 [0.5] Introduction to Business Information and Communication Technologies (Business students only)
 - ECOR 1606 [0.5] Problem Solving and Computers (Engineering students only)

6. The remaining requirements of the major discipline(s) and degree must be satisfied.

Total Credits 4.0

Notes:

- Item 1 above may be satisfied by credit in MATH 1002. Item 2 may be satisfied by credit in MATH 1102.

- With approval an alternate introductory statistics course may be used to satisfy Item 3 above.
MATH 0107 [0.5 credit]
Algebra and Geometry
Prerequisite(s): Grade 11 Functions (University/College Preparation) or equivalent.
Lectures three hours a week, tutorial one hour a week.

MATH 1002 [1.0 credit]
Calculus and Introductory Analysis I
Prerequisite(s): Grade 12 Mathematics: Advanced Functions, and Grade 12 Mathematics: Calculus and Vectors, with grades of at least 75% in each; or MATH 0005 and MATH 0006 with grades of B/better in each; or equivalents; or permission of the School of Mathematics and Statistics.
Lectures three hours a week, tutorial one and one half hours a week.

MATH 1004 [0.5 credit]
Calculus for Engineering or Physics
Prerequisite(s): Ontario Grade 12 Mathematics: Advanced Functions, or MATH 0005 and MATH 0006, or equivalent.
Lectures three hours a week, tutorial one and one half hours a week.

MATH 1005 [0.5 credit]
Differential Equations and Infinite Series for Engineering or Physics
Prerequisite(s): i) MATH 1004; and ii) MATH 1104 (or MATH 1107), either previously or concurrently; or equivalents; or permission of the School.
Restricted to students in the Faculty of Engineering, or in certain B.Sc. programs where specified.
Lectures three hours a week, tutorial one hour a week.

MATH 1007 [0.5 credit]
Elementary Calculus I
Prerequisites additional credit for BIT 1000, BIT 1100, BIT 1200, BIT 2007, MATH 1004, MATH 1005, MATH 1007, MATH 1009, and MATH 2007.
Lectures three hours a week, tutorial one hour a week.

MATH 1009 [0.5 credit]
Calculus: with Applications to Business
Prerequisite(s): Ontario Grade 12 Mathematics: Advanced Functions, or MATH 0005 and MATH 0006; or equivalent.
Lectures three hours a week, tutorial one hour a week.
MATH 1102 [1.0 credit]
Algebra I
Properties of numbers, modular arithmetic, mathematical induction, equivalence relations. Vector spaces, matrix algebra, linear dependence, bases, linear transformations, bilinear and quadratic forms, inner products, eigenvalues, diagonalization; emphasis on proofs and theory.
Precludes additional credit for BIT 1001, BIT 1101, BIT 1201, MATH 1104, MATH 1107, MATH 1119, MATH 2107.
Prerequisite(s): Grade 12 Mathematics: Advanced Functions, or MATH 0005, or equivalent, or permission of the School. Restricted to students in the Faculty of Engineering, the School of Computer Science, or in certain programs where specified.
Lectures three hours a week, tutorial one and a half hours a week.

MATH 1104 [0.5 credit]
Linear Algebra for Engineering or Science
Precludes additional credit for BIT 1001, BIT 1101, BIT 1201, MATH 1102, MATH 1107, MATH 1119, MATH 1401/ECON 1401, MATH 1402/ECON 1402.
Note: MATH 1119 is not an acceptable substitute for MATH 1104.
Prerequisite(s): Ontario Grade 12 Mathematics: Advanced Functions, or MATH 0005, or equivalent, or permission of the School. Restricted to students in the Faculty of Engineering, the School of Computer Science, or in certain B.Sc. and B.A.S. programs where specified.
Lectures three hours a week and tutorial one hour a week.

MATH 1107 [0.5 credit]
Linear Algebra I
Systems of linear equations; vector space of n-tuples, subspaces and bases; matrix transformations, kernel, range; matrix algebra and determinants. Dot product. Complex numbers (including de Moivre’s Theorem, and nth roots). Eigenvalues, diagonalization and applications. Note: MATH 1119 is not an acceptable substitute for MATH 1107.
Precludes additional credit for BIT 1001, BIT 1101, BIT 1201, MATH 1102, MATH 1104, MATH 1119, MATH 1401/ECON 1401, MATH 1402/ECON 1402.
Prerequisite(s): Ontario Grade 12 Mathematics: Advanced Functions, or MATH 0005, or equivalent, or permission of the School.
Lectures three hours a week and tutorial one hour a week.

MATH 1119 [0.5 credit]
Linear Algebra: with Applications to Business
Introduction to systems of linear equations, geometric interpretation in two and three dimensions, introduction to matrices, vector addition and scalar multiplication, linear dependence, matrix operations, rank, inversion, invertible matrix theorem, determinants. Use of illustrative examples related to business. This course is not acceptable for (substitute) credit in any of the following degree programs: B.Math., and also B.Sc., B.C.S., B.Eng., B.I.D.
Precludes additional credit for, but is not an acceptable substitute for: BIT 1001, BIT 1101, BIT 1201, MATH 1102, MATH 1104, MATH 1107, BUSI 1704 (no longer offered), MATH 1109 (no longer offered), MATH 1401/ECON 1401, MATH 1402/ECON 1402.
Prerequisite(s): Ontario Grade 12 Mathematics of Data Management; or Ontario Grade 12 Mathematics: Advanced Functions, or MATH 0005, or equivalent, or permission of the School.
Lectures three hours a week, tutorial one hour a week.

MATH 1102 [1.0 credit]
Algebra I
Properties of numbers, modular arithmetic, mathematical induction, equivalence relations. Vector spaces, matrix algebra, linear dependence, bases, linear transformations, bilinear and quadratic forms, inner products, eigenvalues, diagonalization; emphasis on proofs and theory.
Precludes additional credit for BIT 1001, BIT 1101, BIT 1201, MATH 1104, MATH 1107, MATH 1119, MATH 2107.
Prerequisite(s): Grade 12 Mathematics: Advanced Functions, or MATH 0005, or equivalent, or permission of the School.
Lectures three hours a week and tutorial one hour a week.
MATH 1800 [0.5 credit]
Introduction to Mathematical Reasoning
Elementary logic, propositional and predicate calculus, quantifiers, sets and functions, bijections and elementary counting, the concept of infinity, relations, well ordering and induction. The practice of mathematical proof in elementary number theory and combinatorics.
Precludes additional credit for MATH 1805/COMP 1805.
Prerequisite(s): Ontario Grade 12 Mathematics: Advanced Functions, or MATH 0005, or equivalent.
Lectures three hours a week, tutorial one hour a week.

MATH 1805 [0.5 credit]
Discrete Structures I
Introduction to discrete mathematics and discrete structures. Topics include: propositional logic, predicate calculus, set theory, complexity of algorithms, mathematical reasoning and proof techniques, recurrences, induction, finite automata and graph theory. Material is illustrated through examples from computing. Also listed as COMP 1805.
Precludes additional credit for MATH 1800.
Prerequisite(s): one Grade 12 university preparation Mathematics course; and one of: COMP 1005 or or COMP 1405 or SYSC 1100 (which may be taken concurrently).
Lectures three hours a week, tutorial one hour a week.

MATH 2000 [1.0 credit]
Calculus and Introductory Analysis II (Honours)
Higher dimensional calculus, chain rule, gradient, line and multiple integrals with applications. Use of implicit and inverse function theorems. Real number axioms, limits, continuous functions, differentiability, infinite series, uniform convergence, the Riemann integral.
Prerequisite(s): i) MATH 1002 with a grade of C+ or higher, or (MATH 2007 or MATH 1005 with a grade of B+ or higher and permission of the School); and ii) MATH 1102 with a grade of C+ or higher, or MATH 1107 or MATH 1104 with a grade of B+ or higher; and iii) MATH 1800 (MATH 1800 may be taken concurrently, with permission of the School); or permission of the School.
Lectures three hours a week and one hour tutorial.

MATH 2004 [0.5 credit]
Multivariable Calculus for Engineering or Physics
Prerequisite(s): i) MATH 1005 or MATH 2007; and ii) MATH 1104 or MATH 1107; or permission of the School. Restricted to students in the Faculty of Engineering, or in certain B.Sc. programs where specified.
Lectures three hours a week, tutorial one hour a week.

MATH 2007 [0.5 credit]
Elementary Calculus II
Precludes additional credit for BIT 2007, MATH 1002, MATH 1005.
Prerequisite(s): i) MATH 1004, or a grade of C- or higher in MATH 1007; or permission of the School.
Lectures three hours a week, tutorial one hour a week.

MATH 2008 [0.5 credit]
Intermediate Calculus
Partial differentiation, chain rule, gradient, line and multiple integrals with applications, transformations of multiple integrals.
Prerequisite(s): one of MATH 1002, MATH 1005 or MATH 2007, and one of MATH 1102, MATH 1104 or MATH 1107.
Lectures three hours a week and one hour tutorial.

MATH 2100 [1.0 credit]
Algebra II (Honours)
Introduction to group theory: permutation groups, Lagrange's theorem, normal subgroups, homomorphism theorems. Introduction to ring theory: ring of polynomials, integral domains, ideals, homomorphism theorems. Hermitian form, spectral theorem for normal operators, classical groups.
Precludes additional credit for MATH 2108 and MATH 3101.
Prerequisite(s): i) MATH 1102 with a grade of C+ or higher, or (MATH 2107 with a grade of B+ or higher and permission of the School); and ii) MATH 1800 (MATH 1800 may be taken concurrently, with permission of the School); or permission of the School.
Lectures three hours a week, tutorial one hour a week.

UNOFFICIAL 2017-2018 Carleton University Undergraduate Calendar 15
MATH 2107 [0.5 credit]
Linear Algebra II
Precludes additional credit for MATH 1102.
Prerequisite(s): i) MATH 1104, or a grade of C- or higher in MATH 1107 or MATH 1109; and ii) a grade of C- or higher in MATH 1007 or equivalent; or permission of the School. Note: in item i), MATH 1119 is NOT acceptable as a substitute for MATH 1109.
Lectures three hours a week and one hour tutorial.

MATH 2108 [0.5 credit]
Abstract Algebra I
Sets and relations, number theory, group theory, ring theory, cardinal numbers.
Precludes additional credit for MATH 3101 and MATH 2100.
Prerequisite(s): i) MATH 1102 or MATH 2107; and ii) MATH 1800 (MATH 1800 may be taken concurrently, with permission of the School); or COMP 1805 or MATH 1805; or permission of the School.
Lectures three hours a week and one hour tutorial.

MATH 2210 [0.5 credit]
Introduction to Geometry
An introduction to classical geometry; Euclidean plane geometry; plane tiling; polytopes in three and four dimensions; curved surfaces; Euler characteristic. This course is intended for a general audience, and is available to B.Math. students for credit only as a free elective.
Prerequisite(s): Grade 12 Mathematics and second-year standing.
Lectures three hours a week, tutorial one hour a week.

MATH 2404 [0.5 credit]
Ordinary Differential Equations I
First-order equations, linear second- and higher-order equations, linear systems, stability of second-order systems.
Precludes additional credit for BIT 2004, MATH 1005, MATH 2454.
Prerequisite(s): MATH 1002 and MATH 1102 (or MATH 1107 and MATH 2007).
Lectures three hours a week and one hour tutorial.

MATH 2454 [0.5 credit]
Ordinary Differential Equations (Honours)
Existence and uniqueness theorems. First-order equations, linear second- and higher-order equations, linear systems, stability of second-order systems.
Precludes additional credit for MATH 2404, BIT 2004.
Prerequisite(s): MATH 1002 or MATH 2007 or MATH 1005 with a grade of C+ or higher, and MATH 1102 or MATH 2107 with a grade of C+ or higher.
Lectures three hours a week, tutorial one hour a week.

MATH 2800 [0.5 credit]
Discrete Mathematics and Algorithms
An introduction to discrete mathematics and algorithms in the context of the computational sciences. Basic number theory and counting methods, algorithms for strings, trees and sequences. Applications to DNA and protein sequencing problems. Analysis and complexity of algorithms. Only one of MATH 1805/COMP 1805 or MATH 2800/CMPS 2800 may count for credit in a B.Math. program.
Also listed as CMPS 2800.
Prerequisite(s): COMP 1006 and at least one of MATH 1007, MATH 1107, or STAT 2507.
Lectures three hours a week.

MATH 2907 [0.5 credit]
Directed Studies (Honours)
Available only to Honours students whose program requires a 0.5 credit not offered by the School of Mathematics and Statistics.

MATH 3001 [0.5 credit]
Real Analysis I (Honours)
Metric spaces and their topologies, continuous maps, completeness, compactness, connectedness, introduction to Banach spaces.
Prerequisite(s): MATH 2000 with a grade of C- or higher; or (MATH 3009 and MATH 1800) each with a grade of B or higher, and permission of the instructor; or permission of the School.
Lectures three hours a week and one hour tutorial.

MATH 3002 [0.5 credit]
Real Analysis II (Honours)
Function spaces, pointwise and uniform convergence, Weierstrass approximation theorem, Lebesgue measure and Lebesgue integral on the real line, Hilbert space, Fourier series.
Prerequisite(s): MATH 3001 with a grade of C- or higher, or permission of the School.
Lectures three hours a week, tutorial one hour a week.

MATH 3003 [0.5 credit]
Advanced Differential Calculus (Honours)
Prerequisite(s): MATH 3001 with a grade of C- or higher, or permission of the School.
Lectures three hours a week, tutorial one hour a week.
MATH 3007 [0.5 credit]
Functions of a Complex Variable
Analytic functions, contour integration, residue calculus, conformal mapping. Intended for non-engineering students.
Precludes additional credit for MATH 3057 and PHYS 3807.
Prerequisite(s): one of MATH 2004, MATH 2008 or MATH 2009, or permission of the School.
Lectures three hours a week and one hour tutorial.

MATH 3008 [0.5 credit]
Ordinary Differential Equations (Honours)
Precludes additional credit for MATH 3404 and PHYS 3808.
Prerequisite(s): i) MATH 2000 with a grade of C- or higher, or (MATH 3009 with a grade of B or higher, and permission of the instructor); and ii) MATH 2454 with a grade of C- or higher, or (MATH 2404 with a grade of B or higher, and permission of the instructor).
Lectures three hours a week and one hour tutorial.

MATH 3009 [0.5 credit]
Introductory Analysis
The real number system, sequences and series, functions of a single real variable, derivatives, the definite integral, uniform convergence.
Precludes additional credit for MATH 2000.
Prerequisite(s): one of MATH 2004, MATH 2008, MATH 2009, or permission of the School.
Lectures three hours a week and one hour tutorial.

MATH 3057 [0.5 credit]
Functions of a Complex Variable (Honours)
Analytic functions, contour integration, residue calculus, conformal mappings.
Precludes additional credit for MATH 3007 and PHYS 3807.
Prerequisite(s): MATH 2000 with a grade of C- or higher; or (MATH 2008 or MATH 2004 with a grade of B or higher, and permission of the instructor); or permission of the School.
Lectures three hours a week and one hour tutorial.

MATH 3101 [0.5 credit]
Algebraic Structures with Computer Applications
Introduction to algebraic structures: groups, rings, fields, lattices, and Boolean algebras; with applications of interest to students in Computer Science. This course may not be used to meet the 3000-level course requirements in any General or Honours program in Mathematics and Statistics.
Precludes additional credit for MATH 2108 and MATH 2100.
Prerequisite(s): i) MATH 2107 or MATH 1102; and ii) either COMP 1805/MATH 1805 or MATH 1800 (MATH 1800 may be taken concurrently, with permission of the School); or permission of the School.
Lectures three hours a week and one hour tutorial.

MATH 3106 [0.5 credit]
Introduction to Group Theory (Honours)
Homomorphism theorems; groups acting on sets; permutation groups and groups of matrices; Sylow theory for finite groups; finitely generated abelian groups; generators and relations; applications.
Precludes additional credit for MATH 3108.
Prerequisite(s): MATH 2100 with a grade of C- or higher; or (MATH 2108 or MATH 3101 with a grade of B or higher; and MATH 1800 with a grade of B or higher, and permission of the instructor); or permission of the School.
Lectures three hours a week, tutorial one hour a week.

MATH 3107 [0.5 credit]
Linear Algebra III
Prequisite(s): i) a grade of C- or higher in MATH 1102 or MATH 2107; and ii) credit in MATH 1002 or MATH 2007; or permission of the School.
Lectures three hours a week and one hour tutorial.

MATH 3108 [0.5 credit]
Abstract Algebra II
Precludes additional credit for MATH 3106 and MATH 3158.
Prerequisite(s): MATH 2108, or permission of the School.
Lectures three hours a week and one hour tutorial.
MATH 3158 [0.5 credit]
Rings and Fields (Honours)
Rings, integral domains, Euclidean and principal ideal domains, fields, polynomial rings over a field, algebraic extensions of fields, the fundamental theorem of Galois theory, finite fields, applications.
Precludes additional credit for MATH 3108.
Prerequisite(s): MATH 2100 with a grade of C- or higher, or (MATH 2108 or MATH 3101 with a grade of B or higher and MATH 1800 with a grade of B or higher and permission of the instructor), or permission of the School.
Lectures three hours a week, tutorial one hour a week.

MATH 3206 [0.5 credit]
Plane Projective Geometry
Axioms of Desarguesian geometry, principle of duality; projectivities, perspectivities, and the fundamental theorem; collineations (homologies and elations); correlations (polarities and conics); algebraic model; projective curves; introduction to finite projective planes.
Precludes additional credit for MATH 3256.
Prerequisite(s): MATH 2100 or MATH 2108 or MATH 3101.
Lectures three hours a week and one hour tutorial.

MATH 3210 [0.5 credit]
Euclidean and Non-Euclidean Geometry
Euclidean isometry and similarity groups; geometry of circles; inversion; hyperbolic geometry: Poincare disk model of the hyperbolic plane.
Precludes additional credit for MATH 3205.
Prerequisite(s): MATH 2100 or MATH 2108 or MATH 3101.
Lectures three hours a week, tutorial one hour a week.

MATH 3306 [0.5 credit]
Elements of Set Theory (Honours)
Precludes additional credit for MATH 3310.
Prerequisite(s): MATH 2100 with a grade of C- or higher; or (MATH 2108 or MATH 3101 with a grade of B or higher; and MATH 1800 with a grade of B or higher; and permission of the instructor); or permission of the School.
Lectures three hours a week and one hour tutorial.

MATH 3355 [0.5 credit]
Number Theory and Applications (Honours)
Congruences, distribution of primes, arithmetic functions, primitive roots, quadratic residues, quadratic reciprocity law, continued fractions, Diophantine equations, and applications: public key cryptography, primality testing and factoring in relation to cryptography.
Precludes additional credit for MATH 3309.
Prerequisite(s): MATH 2100 with a grade of C- or higher; or (MATH 2108 or MATH 3101 with a grade of B or higher; and permission of the instructor); or permission of the School.
Lectures three hours a week, tutorial one hour a week.

MATH 3404 [0.5 credit]
Ordinary Differential Equations II
Precludes additional credit for MATH 3008.
Prerequisite(s): MATH 2404, MATH 2008; and MATH 1102 or MATH 2107.
Lectures three hours a week and one hour tutorial.

MATH 3705 [0.5 credit]
Mathematical Methods I
Laplace transforms, series solutions of ordinary differential equations, the Frobenius method. Fourier series and Fourier transforms, solutions of partial differential equations of mathematical physics, boundary value problems, applications. This course may be taken for credit as a 3000-level Honours Mathematics course, by students in any Honours program in the School of Mathematics and Statistics.
Precludes additional credit for PHYS 3808.
Prerequisite(s): i) MATH 1005 or MATH 2404, and ii) MATH 2004 or MATH 2008 or MATH 2009; or permission of the School.
Lectures three hours a week and one hour tutorial.

MATH 3800 [0.5 credit]
Mathematical Modeling and Computational Methods
Also listed as CMPS 3800.
Precludes additional credit for MATH 3806/COMP 3806.
Prerequisite(s): i) MATH 1107 or MATH 1104; ii) MATH 1105 or MATH 2007; and iii) knowledge of a computer language.
Lectures three hours a week, laboratory one hour a week.

MATH 3801 [0.5 credit]
Linear Programming
Formulation of linear programming problems, the simplex method, duality theory, implementations, extensions and applications. Network flow problems and the network simplex method.
Precludes additional credit for ECON 4004, SYSC 3200.
Prerequisite(s): MATH 1102 or MATH 2107, or permission of the School.
Lectures three hours a week and one hour tutorial.
MATH 3802 [0.5 credit]
Combinatorial Optimization
Dijkstra's algorithm and Bellman-Ford algorithm for the minimum weight dipath problem, the minimum weight spanning tree problem, augmenting path algorithm and preflow-push algorithm for the max-flow min-cut problem, connections to linear programming, matchings in bipartite graphs and the assignment problem, the transportation problem, and the general minimum-cost flow problem. Prerequisite(s): MATH 3801, or permission of the School. Lectures three hours a week, tutorial one hour a week.

MATH 3804 [0.5 credit]
Design and Analysis of Algorithms I
An introduction to the design and analysis of algorithms. Topics include: recurrence relations, sorting and searching, divide-and-conquer, dynamic programming, greedy algorithms, NP-completeness. Also listed as COMP 3804. Prerequisite(s): i) one of COMP 2402 or SYSC 2100; and ii) one of COMP 2804 or MATH 3855 or MATH 3825 or COMP 3805. Lectures three hours a week.

MATH 3806 [0.5 credit]
Numerical Analysis (Honours)
Elementary discussion of error, polynomial interpolation, quadrature, linear systems of equations and matrix inversion, non-linear equations, difference equations and ordinary differential equations. Also listed as COMP 3806. Precludes additional credit for MATH 3800. Prerequisite(s): i) MATH 1002 with a grade of C- or higher; or (MATH 1005 or MATH 2007 with a grade of C+ or higher); and ii) MATH 1102 with a grade of C- or higher; or (MATH 1107 or MATH 1104 with a grade of C- or higher; and permission of the instructor); and (iii) knowledge of a computer language. Lectures three hours a week and one hour tutorial.

MATH 3807 [0.5 credit]
Mathematical Software (Honours)
Incorporation of basic numerical methods into efficient, reliable software. The course includes examinations of existing software systems, e.g., linear systems, non-linear systems, optimization, or differential equations. Also listed as COMP 3807. Prerequisite(s): MATH 3806 with a grade of C- or higher. Lectures three hours a week and one hour tutorial.

MATH 3808 [0.5 credit]
Mathematical Analyses of Games of Chance
This course covers mathematics used in the modern casino gaming industry. The topics include probabilities, odds, house advantages, variance and risks, optimal strategies, random walks and gambler's ruin, and gaming revenue estimation. Examples are taken from various games such as Roulette, Blackjack, and Poker. Prerequisite(s): one of STAT 2655, STAT 2605, STAT 2507, STAT 2606, STAT 3502, or MATH 3825 or MATH 3855. Lectures three hours a week, tutorial one hour a week.

MATH 3809 [0.5 credit]
Introduction to Number Theory and Cryptography
Congruences, distribution of primes, general cryptographic systems, public key cryptographic systems and authentication using number theory, primality testing and factoring in relation to cryptography, continued fractions and Diophantine equations. Prerequisite(s): MATH 2108 or MATH 3101 or MATH 2100; knowledge of a computer language. Lectures three hours a week and one hour tutorial.

MATH 3819 [0.5 credit]
Modern Computer Algebra
Algorithms for multiplication, division, greatest common divisors and factorization over the integers, finite fields and polynomial rings. Basic tools include modular arithmetic, discrete Fourier transform, Chinese remainder theorem, Newton iteration, and Hensel techniques. Some properties of finite fields and applications to cryptography. Prerequisite(s): MATH 2108 or MATH 3101 or MATH 2100, or permission of the School. Lectures three hours a week, tutorial/laboratory one hour a week.

MATH 3825 [0.5 credit]
Discrete Structures and Applications
Enumeration: elementary methods, inclusion and exclusion, recurrence relations, generating functions and applications. Graph theory and algorithms: connectivity, planarity, Hamilton paths and Euler trails. Error-correcting codes. Precludes additional credit for MATH 3805 (no longer offered), and MATH 3855 and COMP 3805. Prerequisite(s): MATH 2108 or MATH 3101. Lectures three hours a week, tutorial one hour a week.

MATH 3855 [0.5 credit]
Discrete Structures and Applications (Honours)
Enumeration: inclusion and exclusion, recurrence relations, generating functions and applications. Graph theory: connectivity, planarity, Hamilton paths and Euler trails. Error-correcting codes. Designs and finite geometries. Symmetry and counting. Also listed as COMP 3805. Precludes additional credit for MATH 3805 (no longer offered) and MATH 3825. Prerequisite(s): MATH 2100 with a grade of C- or higher; or (MATH 2108 or MATH 3101) with a grade of B or higher. Lectures three hours a week, tutorial one hour a week.

MATH 3907 [0.5 credit]
Directed Studies
Available only to students whose program requires a 0.5 credit not offered by the School of Mathematics and Statistics.
MATH 3999 [0.0 credit]
Co-operative Work Term Report (Honours)
On completion of each work term, the student must submit to the School of Mathematics and Statistics a written report on the work performed. Graded Sat or Uns.
Prerequisite(s): registration in the Co-operative Education Option of an Honours program offered by the School of Mathematics and Statistics, and permission of the School.

MATH 4002 [0.5 credit]
Fourier Analysis (Honours)
Fourier series, Fourier integrals; introduction to harmonic analysis on locally compact abelian groups, Plancherel Theorem, Pontryagin duality; selected applications.
Prerequisite(s): MATH 3001 or permission of the School. Lectures three hours a week.

MATH 4003 [0.5 credit]
Functional Analysis (Honours)
Banach spaces and bounded linear operators, Hahn-Banach extension and separation, dual spaces, bounded inverse theorems, uniform boundedness principle, applications. Compact operators.
Prerequisite(s): MATH 4007 or permission of the School. Also offered at the graduate level, with different requirements, as MATH 5007, for which additional credit is precluded. Lectures three hours a week.

MATH 4007 [0.5 credit]
Measure and Integration Theory (Honours)
Lebesgue measure and integration on the real line; sigma algebras and measures; integration theory; Lp spaces; Fubini's theorem; decomposition theorems and Radon-Nikodym derivatives.
Prerequisite(s): MATH 3001 or permission of the School. Also offered at the graduate level, with different requirements, as MATH 5007, for which additional credit is precluded. Lectures three hours a week.

MATH 4102 [0.5 credit]
Group Representations and Applications (Honours)
An introduction to the group representations and character theory, with selected applications.
Prerequisite(s): MATH 3106, or a grade of B or higher in MATH 3108. Also offered at the graduate level, with different requirements, as MATH 5102, for which additional credit is precluded. Lectures three hours a week.

MATH 4105 [0.5 credit]
Rings and Modules (Honours)
Fundamental concepts in rings and modules, structure theorems, applications.
Prerequisite(s): MATH 3158 or permission of the School. Lectures three hours a week.

MATH 4106 [0.5 credit]
Group Theory (Honours)
Fundamental principles as applied to abelian, nilpotent, solvable, free and finite groups; representations.
Prerequisite(s): MATH 3106 or permission of the School. Also offered at the graduate level, with different requirements, as MATH 5106, for which additional credit is precluded. Lectures three hours a week.

MATH 4107 [0.5 credit]
Commutative Algebra (Honours)
Fields, including algebraic and transcendental extensions, Galois theory, valuation theory; Noetherian commutative rings, including Noether decomposition theorem and localization.
Prerequisite(s): MATH 3158 or permission of the School. Lectures three hours a week.

MATH 4108 [0.5 credit]
Homological Algebra and Category Theory (Honours)
Axioms of set theory; categories, functors, natural transformations; free, projective, injective and flat modules; tensor products and homology functors, derived functors; dimension theory.
Prerequisite(s): MATH 3158 or permission of the School. Also offered at the graduate level, with different requirements, as MATH 5108, for which additional credit is precluded. Lectures three hours a week.

MATH 4109 [0.5 credit]
Fields and Coding Theory (Honours)
Introduction to field theory, emphasizing the structure of finite fields, primitive elements and irreducible polynomials. The influence of computational problems will be considered. Theory and applications of error-correcting codes: algebraic codes, convolution codes, decoding algorithms, and analysis of code performance.
Prerequisite(s): MATH 2100, or MATH 3101 or MATH 2108 or equivalent; or permission of the School. Lectures three hours a week.

MATH 4205 [0.5 credit]
Introduction to General Topology (Honours)
Topological spaces, maps, subspaces, product and identification topologies, separation axioms, compactness, connectedness.
Prerequisite(s): MATH 3001 or permission of the School. Also offered at the graduate level, with different requirements, as MATH 5205, for which additional credit is precluded. Lectures three hours a week.
MATH 4206 [0.5 credit]
Introduction to Algebraic Topology (Honours)
An introduction to homotopy theory. Topics include the fundamental group, covering spaces and the classification of two-dimensional manifolds.
Prerequisite(s): MATH 3106 and MATH 4205; or permission of the School.
Also offered at the graduate level, with different requirements, as MATH 5206, for which additional credit is precluded.
Lectures three hours a week.

MATH 4207 [0.5 credit]
Foundations of Geometry (Honours)
A study of at least one modern axiom system of Euclidean and non-Euclidean geometry, embedding of hyperbolic and Euclidean geometries in the projective plane, groups of motions, models of non-Euclidean geometry.
Prerequisite(s): MATH 3106 (may be taken concurrently) or permission of the School.
Lectures three hours a week.

MATH 4208 [0.5 credit]
Introduction to Differentiable Manifolds (Honours)
Introduction to differentiable manifolds; Riemannian manifolds; vector fields and parallel transport; geodesics; differential forms on a manifold; covariant derivative; Betti numbers.
Prerequisite(s): MATH 3002 or permission of the School.
Lectures three hours a week.

MATH 4305 [0.5 credit]
Analytic Number Theory (Honours)
Dirichlet series, characters, Zeta-functions, prime number theorem, Dirichlet's theorem on primes in arithmetic progressions, binary quadratic forms.
Prerequisite(s): MATH 3057 or permission of the School.
Lectures three hours a week.

MATH 4306 [0.5 credit]
Algebraic Number Theory (Honours)
Algebraic number fields, bases, algebraic integers, integral bases, arithmetic in algebraic number fields, ideal theory, class number.
Prerequisite(s): MATH 3158 (may be taken concurrently) or permission of the School.
Also offered at the graduate level, with different requirements, as MATH 5306, for which additional credit is precluded.
Lectures three hours a week.

MATH 4600 [0.5 credit]
Case Studies in Operations Research (Honours)
Applications of the principles of Operations Research to practical problems in business, management, and science. Students present at least one case and analyze cases in the published literature. Cases may also be presented by visiting practitioners. Note: students in Honours Mathematics/Statistics programs may only take this course as a free option.
Prerequisite(s): STAT 2509 (or STAT 2559) and MATH 3801; or permission of the School.
Seminars three hours a week.

MATH 4700 [0.5 credit]
Partial Differential Equations (Honours)
First-order partial differential equations. Classification of second-order linear partial differential equations; the diffusion equation, wave equation and Laplace's equation; separation of variables; Fourier and Laplace transform methods for the solution of initial/boundary value problems; Green's functions.
Prerequisite(s): MATH 3057 and one of MATH 3008 or MATH 3705; or permission of the School.
Lectures three hours a week.

MATH 4701 [0.5 credit]
Topics in Differential Equations (Honours)
Topics in the theory and application of differential equations; for example, hyperbolic systems, fluid dynamics, nonlinear wave equations, optimal mass transport, control theory, calculus of variations.
Prerequisite(s): i) MATH 3008; and ii) one of MATH 3001 or MATH 3057; or permission of the School.
Also offered at the graduate level, with different requirements, as MATH 5407, for which additional credit is precluded.
Lectures three hours a week.

MATH 4703 [0.5 credit]
Dynamical Systems (Honours)
Applications.
Prerequisite(s): MATH 3001 and MATH 3008 or permission of the School.
Lectures three hours a week.
MATH 4708 [0.5 credit]
Asymptotic Methods of Applied Mathematics (Honours)
Asymptotic series: properties, matching, application to differential equations. Asymptotic expansion of integrals: elementary methods, methods of Laplace, stationary phase and steepest descent, Watson’s lemma, Riemann-Lebesgue lemma. Perturbation methods: regular and singular perturbation for differential equations, multiple scale analysis, boundary layer theory, WKB theory. Prerequisite(s): MATH 3057 and at least one of MATH 3008 or MATH 3705, or permission of the School. Also offered at the graduate level, with different requirements, as MATH 5408, for which additional credit is precluded. Lectures three hours a week.

MATH 4801 [0.5 credit]
Topics in Combinatorics (Honours)
An in-depth study of one or more topics from: generating functions, Polya’s theory of counting, block designs, coding theory, partially ordered sets and Ramsey theory. Prerequisite(s): MATH 2100 and MATH 3855 or permission of the School. Lectures three hours a week.

MATH 4802 [0.5 credit]
Introduction to Mathematical Logic (Honours)
Symbolic logic, propositional and predicate calculi, set theory and model theory, completeness. Prerequisite(s): MATH 2100 or permission of the School. Lectures three hours a week.

MATH 4803 [0.5 credit]
Computable Functions (Honours)
Recursive functions and computability, algorithms, Church’s thesis, Turing machines, computational logic, NP-completeness. Also listed as COMP 4803. Prerequisite(s): MATH 2100 or MATH 3855 or permission of the School. Lectures three hours a week.

MATH 4805 [0.5 credit]
Theory of Automata (Honours)
Finite automata and regular expressions, properties of regular sets, context-free grammars, pushdown automata, deterministic context-free languages. Turing machines, the Chomsky hierarchy. Undecidability, intractable problems. Also listed as COMP 4805. Prerequisite(s): MATH 3106 or MATH 3158 or MATH 3855 or permission of the School. Also offered at the graduate level, with different requirements, as MATH 5605, for which additional credit is precluded. Lectures three hours a week.

MATH 4806 [0.5 credit]
Numerical Linear Algebra (Honours)
Matrix computations, conditioning and stability, direct methods for linear systems, classical iterative methods: Jacobi, Gauss-Seidel; modern iterative methods, Arnoldi decomposition, GMRES and other Krylov subspace based methods for sparse and structured matrices; numerical solution of eigenvalue problems, implementation using suitable programming language, application to differential equations and optimization problems. Also listed as COMP 4806. Prerequisite(s): MATH 1102 or MATH 2107; MATH 2000 and MATH 3806; or permission of the School. Lectures three hours a week.

MATH 4807 [0.5 credit]
Game Theory (Honours)
Two-person zero-sum games; infinite games; multistage games; differential games; utility theory; two-person general-sum games; bargaining problem; n-person games; games with a continuum of players. Prerequisite(s): MATH 3801 or permission of the School. Also offered at the graduate level, with different requirements, as MATH 5607, for which additional credit is precluded. Lectures three hours a week.

MATH 4808 [0.5 credit]
Graph Theory and Algorithms (Honours)
Paths, circuits, Eulerian and Hamiltonian graphs, connectivity, colouring problems, matching, Ramsey theory, network flows. Prerequisite(s): MATH 3106 or MATH 3158 or MATH 3855 or permission of the School. Lectures three hours a week.

MATH 4809 [0.5 credit]
Mathematical Cryptography (Honours)
Topics covered include: a general survey of public key cryptography; classical applications of finite fields and number theory; relevant background in geometry and algebraic curves; computational issues concerning elliptic curves; elliptic curve cryptosystems; security issues. Prerequisite(s): MATH 3158, or permission of the School. Lectures three hours a week.

MATH 4811 [0.5 credit]
Combinatorial Design Theory (Honours)
Existence and construction of combinatorial designs: finite geometries, pairwise balanced designs, balanced incomplete block designs, Steiner triple systems, symmetric designs, PBD closure, latin squares, transversal designs, and applications to information theory. Prerequisite(s): MATH 3855, or permission of the School. Lectures three hours a week.
MATH 4816 [0.5 credit]
Numerical Analysis for Differential Equations (Honours)
Floating point arithmetic; numerical solution of ODEs; finite difference methods for PDEs; stability, accuracy and convergence: von Neumann analysis, CFL condition, Lax Theorem. Finite element methods: boundary value problems and elliptic PDEs. Spectral and pseudo-spectral methods.
Prerequisite(s): MATH 2454 and MATH 3806, or permission of the School.
Also offered at the graduate level, with different requirements, as MATH 5816, for which additional credit is precluded.
Lectures three hours a week.

MATH 4821 [0.5 credit]
Quantum Computing (Honours)
Prerequisite(s): MATH 1102 (or MATH 2107) with a grade of C+ or better, and permission of the School.
Also offered at the graduate level, with different requirements, as MATH 5821, for which additional credit is precluded.
Lectures three hours a week.

MATH 4822 [0.5 credit]
Wavelets and Digital Signal Processing (Honours)
Prerequisite(s): MATH 1102 (or MATH 2107) with a grade of C+ or better, and permission of the School.
Also offered at the graduate level, with different requirements, as MATH 5822, for which additional credit is precluded.
Lectures three hours a week.

MATH 4905 [0.5 credit]
Honours Project (Honours)
Consists of a written report on some approved topic or topics in the field of mathematics, together with a short lecture on the report.
Prerequisite(s): B.Math.(Honours) students only.

MATH 4906 [0.5 credit]
Directed Studies (Honours)
Prerequisite(s): B.Math.(Honours) students only.

MATH 4907 [0.5 credit]
Directed Studies (Honours)
Prerequisite(s): B.Math.(Honours) students only.

Statistics (STAT) Courses

STAT 2507 [0.5 credit]
Introduction to Statistical Modeling I
A data-driven introduction to statistics. Basic descriptive statistics, introduction to probability theory, random variables, discrete and continuous distributions, contingency tables, sampling distributions, distribution of sample mean, Central Limit Theorem, interval estimation and hypothesis testing. A statistical software package will be used.
Precludes additional credit for BIT 2000, BIT 2100 (no longer offered), BIT 2300 (no longer offered), ECON 2201, ENST 2006, GEG 2006, GEG 3003, STAT 2606, and STAT 3502. May not be counted for credit in any program if taken after successful completion of STAT 2559.
Prerequisite(s): an Ontario Grade 12 university-preparation Mathematics or equivalent, or permission of the School of Mathematics and Statistics.
Lectures three hours a week, laboratory one hour a week.

STAT 2509 [0.5 credit]
Introduction to Statistical Modeling II
A data-driven approach to statistical modeling. Basics of experimental design, analysis of variance, simple linear regression and correlation, nonparametric procedures. A statistical software package will be used.
Precludes additional credit for STAT 2607, ECON 2202.
Prerequisite(s): STAT 2507 or STAT 2606 or STAT 3502; or permission of the School.
Lectures three hours a week, laboratory one hour a week.

STAT 2559 [0.5 credit]
Basics of Statistical Modeling (Honours)
Estimation and hypothesis testing for one and two samples, analysis of categorical data, basics of experimental design, analysis of variance, simple linear regression and correlation. Nonparametric procedures. A statistical software package will be used.
Prerequisite(s): STAT 2507 or permission of the School.
Lectures three hours a week, tutorial/laboratory one hour a week.

STAT 2605 [0.5 credit]
Probability Models
Basic probability; discrete random variables with focus on binomial and Poisson random variables; continuous random variables, transformation theorem, simulating continuous random variables; exponential random variable, normal random variable, sums of random variables, central limit theorem. Elements of Markov chains, and introduction to Poisson processes. Restricted to students in Bachelor of Computer Science, Bachelor of Mathematics in Computer Mathematics, and Bachelor of Engineering in Communications Engineering.
Precludes additional credit for STAT 2655 and STAT 3502.
Prerequisite(s): MATH 1007 or MATH 1004 or MATH 1002, and MATH 1104 or MATH 1107 (or MATH 1102).
Lectures three hours a week, tutorial one hour a week.
STAT 2606 [0.5 credit]
Business Statistics I
Introduction to statistical computing; probability concepts; descriptive statistics; estimation and testing of hypotheses. Emphasis on the development of an ability to interpret results of statistical analyses with applications from business. Restricted to students in the School of Business. Precludes additional credit for BIT 2000, BIT 2100 (no longer offered), BIT 2300 (no longer offered), ECON 2201, ENST 2006, GEOG 2006, STAT 2507, and STAT 3502.
Prerequisite(s): MATH 1009 with a grade of C- or better, or permission of the School.
Lectures three hours a week and laboratory one hour a week.

STAT 2607 [0.5 credit]
Business Statistics II
Topics include: experimental design, multiple regression and correlation analysis, covariance analysis, and introductory time series. Use of computer packages. Restricted to students in the School of Business. Precludes additional credit for STAT 2509, ECON 2202.
Prerequisite(s): STAT 2606.
Lectures three hours a week and one hour laboratory.

STAT 2655 [0.5 credit]
Introduction to Probability with Applications (Honours)
Probability axioms, basic combinatorial analysis, conditional probability and independence, discrete and continuous random variables, joint and conditional distributions, expectation and moments, probability and moment generating functions, Chebyshev's inequality and weak law of large numbers, central limit theorem, sampling distributions, simulation and applications to descriptive statistics. Precludes additional credit for STAT 2605.
Prerequisite(s): MATH 1002 with a grade of C+ or higher or MATH 2007 or MATH 1005 with a grade of B+ or higher; and MATH 1102 with a grade of C+ or higher or MATH 2107 with a grade of B+ or higher; or permission of the School.
Lectures three hours a week, tutorial one hour a week.

STAT 2660 [0.5 credit]
Mathematics for Finance (Honours)
Interest rates, growth of money, discount functions, yield rates, time value of money, annuities, cash flows and portfolios, loans, mortgages, bonds, immunization, swaps, hedging and investment strategies, stocks and financial markets, arbitrage. Prerequisite(s): i) one of MATH 1002 or MATH 2007 or MATH 1005, grade of C+ or higher; and ii) one of MATH 1102 or MATH 1107 or MATH 1104, grade of C+ or higher; or permission of the School.
Lectures three hours a week, tutorial one hour a week.

STAT 3502 [0.5 credit]
Probability and Statistics
Axioms of probability; conditional probability and independence; random variables; distributions: binomial, Poisson, hypergeometric, normal, gamma; central limit theorem; sampling distributions; point estimation: maximum likelihood, method of moments; confidence intervals; testing of hypotheses: one and two populations; engineering applications: acceptance sampling, control charts, reliability. Precludes additional credit for BIT 2000, BIT 2100 (no longer offered), BIT 2300 (no longer offered), ECON 2201, STAT 2507, STAT 2605, and STAT 2606.
Prerequisite(s): MATH 2004 and enrolment in the Faculty of Engineering or B.Sc. programs of the Department of Physics [except Double Honours Mathematics and Physics].
Lectures three hours a week and one hour laboratory.

STAT 3503 [0.5 credit]
Regression Analysis
Review of simple and multiple regression with matrices, Gauss-Markov theorem, polynomial regression, indicator variables, residual analysis, weighted least squares, variable selection techniques, nonlinear regression, correlation analysis and autocorrelation. Computer packages are used for statistical analyses. Precludes additional credit for STAT 3553.
Prerequisite(s): i) STAT 2509 or STAT 2607, or ECON 2200, or ECON 2202, or equivalent; and ii) MATH 1102 or MATH 1107 or MATH 1109 or equivalent; or permission of the School.
Lectures three hours a week and one hour laboratory.

STAT 3504 [0.5 credit]
Analysis of Variance and Experimental Design
Single and multifactor analysis of variance, orthogonal contrasts and multiple comparisons, analysis of covariance; nested, crossed and repeated measures designs; completely randomized, randomized block, Latin squares, factorial experiments, related topics. Computer packages are used for statistical analyses. Precludes additional credit for STAT 4504.
Prerequisite(s): STAT 3503 or permission of the School.
Lectures three hours a week and one hour laboratory.

STAT 3506 [0.5 credit]
Stochastic Processes and Applications (Honours)
Conditional probability and conditional expectation; Stochastic modeling; discrete time Markov chains including classification of states, stationary and limiting distributions; exponential distribution and the Poisson processes; queueing models; applications to computer systems, operations research and social sciences. Prequisite(s): MATH 2655 with a grade of C- or higher; or permission of the School.
Lectures three hours a week, tutorial one hour a week.
STAT 3507 [0.5 credit]
Sampling Methodology
The sample survey as a vehicle for information collection in government, business, scientific and social agencies. Topics include: planning a survey, questionnaire design, simple random, stratified, systematic and cluster sampling designs, estimation methods, problem of non-response, related topics.
Prerequisite(s): one of STAT 2507, or STAT 2509, STAT 2606, STAT 2607, ECON 2200, ECON 2201 or ECON 2202 or equivalent; or permission of the School. Lectures three hours a week and one hour laboratory.

STAT 3508 [0.5 credit]
Elements of Probability Theory
Discrete and continuous distributions, moment-generating functions, marginal and conditional distributions, transformation theory, limiting distributions.
Precludes additional credit for STAT 3558 and STAT 3608.
Prerequisite(s): i) MATH 2008 (or MATH 2004 or MATH 2009); and ii) one of STAT 2507, STAT 2606, ECON 2200, or ECON 2201 or permission of the School. Lectures three hours a week, tutorial one hour a week.

STAT 3509 [0.5 credit]
Mathematical Statistics
Point and interval estimation, sufficient statistics, hypothesis testing, chi-square tests with enumeration data.
Precludes additional credit for STAT 3559.
Prerequisite(s): STAT 3508 or permission of the School. Lectures three hours a week, tutorial one hour a week.

STAT 3553 [0.5 credit]
Regression Modeling (Honours)
Linear regression - theory, methods and application(s).
Precludes additional credit for STAT 3503.
Prerequisite(s): i) STAT 2559 with a grade of C- or higher, or STAT 2509 with a grade of B or higher; and ii) a grade of C- or higher in MATH 1102 or MATH 1107 or MATH 1104; or permission of the School. Lectures three hours a week, laboratory one hour a week.

STAT 3558 [0.5 credit]
Elements of Probability Theory (Honours)
Random variables and moment-generating functions, concepts of conditioning and correlation; laws of large numbers, central limit theorem; multivariate normal distribution; distributions of functions of random variables, sampling distributions, order statistics.
Precludes additional credit for STAT 3508 and STAT 3608.
Prerequisite(s): i) STAT 2655 with a grade of C- or higher; and ii) MATH 2000 with a grade of C- or higher, or (a grade of C+ or higher in MATH 2008 or MATH 2004, and permission of the instructor); or permission of the School. Lectures three hours a week, tutorial one hour a week.

STAT 3559 [0.5 credit]
Mathematical Statistics (Honours)
Empirical distribution functions, Monte Carlo methods, elements of decision theory, point estimation, interval estimation, tests of hypotheses, robustness, nonparametric methods.
Precludes additional credit for STAT 3509.
Prerequisite(s): STAT 3558 with a grade of C- or higher; or (STAT 3508 with a grade of B or higher, and permission of the instructor); or permission of the School. Lectures three hours a week, tutorial one hour a week.

STAT 4500 [0.5 credit]
Parametric Estimation (Honours)
Preliminaries on probability theory; exact and asymptotic sampling distributions; unbiasedness, consistency, efficiency, sufficiency and completeness; properties of maximum likelihood estimators; least squares estimation of location and scale parameters based on order statistics and sample quantiles; Best Asymptotically Normal (BAN) estimators.
Prerequisite(s): STAT 3559 or permission of the School. Also offered at the graduate level, with different requirements, as STAT 5600, for which additional credit is precluded. Lectures three hours a week.

STAT 4501 [0.5 credit]
Probability Theory (Honours)
Introduction to probability, characteristic functions, probability distributions, limit theorems.
Prerequisite(s): STAT 3506 and STAT 3558 or permission of the School. Lectures three hours a week.

STAT 4502 [0.5 credit]
Survey Sampling (Honours)
Basic concepts in sampling from finite populations; simple random sampling; stratified sampling; choice of sampling unit; cluster and systematic sampling; introduction to multistage sampling; ratio estimation; sampling with unequal probabilities and with replacement; replicated sampling; related topics.
Prerequisite(s): i) STAT 2559 or STAT 2509; and ii) either STAT 3509, or a grade of C+ or better in STAT 3509; or permission of the School. Lectures three hours a week.

STAT 4503 [0.5 credit]
Applied Multivariate Analysis (Honours)
Selected topics in regression and correlation non-linear models. Multivariate statistical methods, principal components, factor analysis, multivariate analysis of variance, discriminant analysis, canonical correlation, analysis of categorical data.
Prerequisite(s): STAT 3553 or (STAT 3509 and STAT 3503) or permission of the School. Also offered at the graduate level, with different requirements, as STAT 5509, for which additional credit is precluded. Lectures three hours a week.
STAT 4504 [0.5 credit]
Statistical Design and Analysis of Experiments (Honours)
An extension of the designs discussed in STAT 2559 to include analysis of the completely randomized design, designs with more than one blocking variable, incomplete block designs, fractional factorial designs, multiple comparisons; and response surface methods. Precludes additional credit for STAT 3504 and ECON 4706. PSYC 3000 is precluded for additional credit for students registered in a Mathematics program. Prerequisite(s): STAT 3553 or STAT 3503; or permission of the School of Mathematics and Statistics. Lectures three hours a week, laboratory one hour a week.

STAT 4506 [0.5 credit]
Nonparametric Methods (Honours)
Order statistics; projections; U-statistics; L-estimators; rank, sign, and permutation test statistics; nonparametric tests of goodness-of-fit, homogeneity, symmetry, and independence; nonparametric density estimation; nonparametric regression analysis: kernel estimators, orthogonal series estimators, smoothing splines; high-dimensional inference and false discovery. Prerequisite(s): STAT 3559 or permission of the School. Lectures three hours a week.

STAT 4507 [0.5 credit]
Statistical Inference (Honours)
Sufficient statistics, simple and composite hypotheses, most powerful and similar region test, distribution-free tests, confidence intervals, goodness-of-fit and likelihood ratio tests, large sample theory, Bayesian and likelihood methods, sequential tests. Prerequisite(s): STAT 4500 or permission of the School. Also offered at the graduate level, with different requirements, as STAT 5501, for which additional credit is precluded. Lectures three hours a week.

STAT 4508 [0.5 credit]
Stochastic Models (Honours)
Review of discrete Markov chains and Poisson processes; continuous time Markov chains; pure jump Markov processes, and birth and death processes including the Q-matrix approach; the Kolmogorov equations; renewal theory; introduction to Brownian motion; queueing theory. Prerequisite(s): STAT 3506 or permission of the School. Also offered at the graduate level, with different requirements, as STAT 5701, for which additional credit is precluded. Lectures three hours a week.

STAT 4509 [0.5 credit]
Advanced Mathematical Modeling (Honours)
Real-life situations in the physical, social, and life sciences are often modeled using mathematical tools. This course will examine various models and techniques used in their analysis, e.g., matrix procedures in connection with population models. Students will use a computer package to obtain numerical results. Prerequisite(s): i) MATH 2454 and STAT 2655 (or MATH 2404 and STAT 2605) and ii) STAT 3506; or permission of the School. Also offered at the graduate level, with different requirements, as STAT 5601, for which additional credit is precluded. Lectures three hours a week.

STAT 4555 [0.5 credit]
Monte Carlo Simulation (Honours)
Basic ideas and algorithms of Monte Carlo; simulation of basic stochastic processes. Brownian motion and the Poisson process, applications to financial modelling, queueing theory. Output analysis; variance reduction. Markov chain Monte Carlo methods; Gibbs sampling, simulated annealing and Metropolis-Hastings samplers with applications. Precludes additional credit for STAT 3555 (no longer offered). Prerequisite(s): STAT 3558, or a grade of B or higher in STAT 3508, or permission of the School. Lectures three hours a week, tutorial/laboratory one hour a week.

STAT 4601 [0.5 credit]
Data Mining I (Honours)
Data visualization; knowledge discovery in datasets; unsupervised learning: clustering algorithms; dimension reduction; supervised learning: pattern recognition, smoothing techniques, classification. Computer software will be used. Prerequisite(s): STAT 3553 or STAT 3503 or MATH 3806, or permission of the School. Lectures three hours a week, laboratory one hour a week.

STAT 4603 [0.5 credit]
Time Series and Forecasting (Honours)
Time series regression. Nonstationary and stationary time series models. Nonseasonal and seasonal time series models. ARIMA (Box-Jenkins) models. Smoothing methods. Parameter estimation, model identification, diagnostic checking. Forecasting techniques. A statistical software package will be used. Prerequisite(s): STAT 3553 or STAT 3503, or permission of the School. Lectures three hours a week, laboratory one hour a week.
STAT 4604 [0.5 credit]
Statistical Computing (Honours)
Statistical computing techniques, pseudo-random number generation, tests for randomness, numerical algorithms in statistics; optimization techniques; environments for data analysis, efficient programming techniques; statistics with mainstream software.
Prerequisite(s): STAT 3553 or STAT 3503 or permission of the School.
Lectures three hours a week, laboratory one hour a week.

Summer session: some of the courses listed in this Calendar are offered during the summer. Hours and scheduling for summer session courses will differ significantly from those reported in the fall/winter Calendar. To determine the scheduling and hours for summer session classes, consult the class schedule at central.carleton.ca

Not all courses listed are offered in a given year. For an up-to-date statement of course offerings for the current session and to determine the term of offering, consult the class schedule at central.carleton.ca