Biomedical Engineering (BIOM)

Biomedical Engineering (BIOM) Courses BIOM 5010 [0.5 credit]

Introduction to Biomedical Engineering

Research ethics and methods. Engineering systems approach to analysis and modelling of human anatomy and physiology. Introduction to topics including biomechanics, electrophysiology, and computational biology. Biomedical technologies. Impact of technology on society.

BIOM 5100 [0.5 credit] (BMG 5103) Biomedical Instrumentation

Instrumentation designed to measure physiological variables related to the function of the heart,lungs, kidney, nervous and musculo-skeletal system; emergency, critical care, surgery and anaesthesia equipment.

Also listed as SYSC 5302 (ELG 6320).

Prerequisite(s): permission of the instructor.

BIOM 5101 [0.5 credit] (BMG 5104) Biological Signals

Modeling of neuromuscular biological signals, including subthreshold phenomena, active behaviour of cell membranes, and innervation processes. Measurement of biological signals, including electrode effects. Time domain, frequency domain, and adaptive filtering techniques for noise reduction.

Also listed as SYSC 5307 (ELG 6307).

BIOM 5106 [0.5 credit] (BMG 5109) Advanced Topics in Medical Instrumentation

Recent and advanced topics in the field of medical instrumentation and its related areas.

BIOM 5200 [0.5 credit] (BMG 5105) Medical Imaging Modalities

Mathematical models of image formation based on the image modality and tissue properties. Linear models of image degradation and reconstruction. Inverse problems, regularization for image reconstruction. Image formation in radiology, computed tomography, MRI, nuclear medicine, ultrasound, positron emission tomography.

Also listed as SYSC 5304 (ELG 5127).

BIOM 5201 [0.5 credit] (BMG 5106) Introduction to Medical Imaging Principles and Technology

Basic principles and technological implementation of x-ray, nuclear medicine, magnetic resonance imaging (MRI), and other imaging modalities used in medicine. Contrast, resolution, storage requirements for digital images. Applications outside medicine, future trends. Also listed as PHYS 5201.

Prerequisite(s): permission of the Physics department.

BIOM 5202 [0.5 credit] (BMG 5107)

Applications in Biomedical Image Processing

Image processing methods applied to biomedical images. Overview of medical imaging modalities. Image enhancement, segmentation, registration and fusion. Image quality metrics. Image formats. Application examples.

Includes: Experiential Learning Activity Also listed as SYSC 5202.

BIOM 5203 [0.5 credit] (BMG 5108)

Advanced Topics in Biomedical Image Processing

Recent and advanced topics in the field of biomedical image processing and its related areas. Prerequisite(s): permission of the instructor.

BIOM 5300 [0.5 credit] (BMG 5300) Biological and Engineering Materials

Properties of structural biological materials (bone, tendon, ligament, skin, cartilage, muscle, and blood vessels) from an engineering materials viewpoint. Selection of engineering materials as biomaterials. Introduction to biocompatibility. Histology of soft tissues. Viscoelasticity, mechanical properties and models of muscles, ligaments and tendons.

Prerequisite(s): permission of the instructor.

BIOM 5301 [0.5 credit] (BMG 5301)

Biomechanics of Skeletal System, Motion and Tissue

Analysis of human motion. Kinematics and kinetics of various activities. Engineering analysis and modeling techniques applied to human motion. Injury mechanics, treatment, prosthetic replacements. Fracture behaviour and healing processes.

Prerequisite(s): permission of the instructor.

BIOM 5302 [0.5 credit] (BMG 5302) Biofluid Mechanics

Properties of blood. Blood flow models for vessels, circulation systems and the heart. Artificial blood vessels. Kidney flow and exchange. Modeling of perfused tissues and cells. Transport phenomena across membranes. Molecular and ionic transport. Other body fluids. Prerequisite(s): permission of the instructor.

BIOM 5304 [0.5 credit] (BMG 5110)

Advanced Topics in Biomechanics and Biomaterials Recent and advanced topics in the field of biomechanics and biomaterials and its related areas.

BIOM 5306 [0.5 credit] (BMG 5306) Special Topics in Mechanical and Aerospace Engineering: Biomechanics

Overview of human anatomy and physiology with emphasis on artificial organ and prosthetic device design requirement. Application of engineering principles to cells and tissues, biofluid mechanics, human body energetics, measurement techniques, mechanics of human body systems, with emphasis on the artificial heart.

BIOM 5311 [0.5 credit] (BMG 5311) Design of Medical Devices and Implants

Solutions to clinical problems through the use of implants and medical devices. Pathology of organ failure and bioengineering and clinical aspects of artificial organs. Examples: blood substitutes, oxygenators, cardiac support, vascular substitutes, pacemakers, ventricular assist devices, artificial hearts and heart valves. Prerequisite(s): permission of the instructor.

BIOM 5312 [0.5 credit] (BMG 5312) Design of Orthopaedic Implants and Prostheses

Anatomy of the musculo-skeletal system. Electromyography. Static and dynamic analysis of the human skeleton. Materials and manufacturing considerations for orthopaedic devices. Strength and failure theories. Implant fatigue, fracture and corrosion. Prerequisite(s): permission of the instructor.

BIOM 5315 [0.5 credit] (BMG 5315) Biorobotics

Interpretation of physical laws as applied to human motion, kinematics and dynamics of humanoid robots, modeling of biological sensors and actuators, artificial muscles, telemanipulation, robot assisted surgery, and multi-fingered end-effectors. Design of mechatronic devices including rehabilitators, extenders, haptic devices, and minimally invasive surgery systems.

Prerequisite(s): permission of the instructor.

BIOM 5330 [0.5 credit] (BMG 5330) Electromagnetic Fields and Biological Systems

Review of electromagnetic waves at radio and microwave frequencies. Electrical and magnetic properties of tissue. Impact of electromagnetic waves on tissue. Cellular effects.

Prerequisite(s): permission of the instructor.

BIOM 5402 [0.5 credit] (BMG 5304) Interactive Networked Systems and Telemedicine

Telemanipulator; human motoring and sensory capabilities; typical interface devices; mathematical model of haptic interfaces; haptic rendering; stability and transparency; remote control schemes; time delay compensation; networking and real-time protocols, history and challenges of telemedicine; telemedicine applications: telesurgery, tele-monitoring, tele-diagnosis and tele-homecare.

Also listed as SYSC 5303 (ELG 6133). Prerequisite(s): permission of the instructor.

BIOM 5403 [0.5 credit] (BMG 5111) Advanced Topics in Medical Informatics and Telemedicine

Recent and advanced topics in the field of medical informatics and telemedicine and its related areas.

BIOM 5405 [0.5 credit] (BMG 5305)

Pattern Classification and Experiment Design

Introduction to a variety of supervised and unsupervised pattern classification techniques with emphasis on correct application. Statistically rigorous experimental design and reporting of performance results. Case studies will be drawn from various fields including biomedical informatics. Includes: Experiential Learning Activity
Also listed as SYSC 5405 (ELG 6102).

Prerequisite(s): undergraduate introductory probability and statistics.

BIOM 5406 [0.5 credit] Clinical Engineering

Overview of the Canadian health care system; brief examples of other countries; clinical engineering and the management of technologies in industrialized and in developing countries; safety, reliability, quality assurance; introduction to biomedical sensor technologies; applications of telemedicine; impact of technology on health care.

Prerequisite(s): enrolment in M.Eng. Biomedical Engineering with Concentration in Clinical Engineering. Also offered at the undergraduate level, with different requirements, as SYSC 4202, for which additional credit is precluded.

BIOM 5800 [0.0 credit] (BMG 6996) Biomedical Engineering Seminar

This course is in the form of seminars presented by graduate students and other researchers in the area of Biomedical Engineering. To complete this course, a student must attend at least ten seminars and make one presentation in the context of this seminar series. Includes: Experiential Learning Activity

BIOM 5801 [1.0 credit] Clinical Engineering Internship

Internship placements are set in an institutional setting outside of the University. Students must complete a formal written paper in addition to their internship activities. Includes: Experiential Learning Activity

BIOM 5900 [1.5 credit] Biomedical Engineering Project

Students pursuing the project-based M.Eng. completion option conduct a biomedical engineering study, analysis, and/or design project under the supervision of a faculty member

Includes: Experiential Learning Activity

BIOM 5901 [1.5 credit] Clinical Engineering Project

Students pursuing the M.Eng. Clinical Engineering completion option conduct a clinical engineering study, analysis, and/or design project under the supervision of a faculty member.

Includes: Experiential Learning Activity

BIOM 5906 [0.5 credit] (BMG 7199)

Directed Studies in Biomedical Engineering

Various possibilities exist for pursuing directed studies on topics approved by a course supervisor, including the above-listed course topics where they are not offered on a formal basis.

BIOM 5909 [2.5 credits]

M.A.Sc. Thesis

Includes: Experiential Learning Activity

BIOM 6800 [0.0 credit] Biomedical Engineering PhD Seminar

This course is in the form of seminars presented by graduate students and other researchers in the area of Biomedical Engineering.

BIOM 6909 [0.0 credit]

Ph.D. Thesis

Includes: Experiential Learning Activity