Print and PDF Options

This is an archived copy of the 2023-2024 catalog. To access the most recent version of the catalog, please visit http://calendar.carleton.ca.

Mechanical Engineering (MECH) Courses

MECH 5000 [0.5 credit] (MCG 5300)
Fundamentals of Fluid Dynamics

Differential equations of motion. Viscous and inviscid regions. Potential flow: superposition; thin airfoils; finite wings; compressibility corrections. Viscous flow: thin shear layer approximation; laminar layers; transition; turbulence modeling. Convective heat transfer: free versus forced convection; energy and energy integral equations; turbulent diffusion.
Also listed as MAAJ 5050.

MECH 5001 [0.5 credit] (MCG 5301)
Theory of Viscous Flows

Navier-Stokes and boundary layer equations; mean flow equations for turbulent kinetic energy; integral formulations. Stability, transition, turbulence, Reynolds stresses; separation. Calculation methods, closure schemes. Compressibility, heat transfer, and three-dimensional effects.
Includes: Experiential Learning Activity

MECH 5003 [0.5 credit] (MCG 5303)
Incompressible Non-Viscous Flow

The fundamental equations and theorems for non-viscous fluid flow; solution of two-dimensional and axisymmetric potential flows; low-speed airfoil and cascade theory; wing lifting-line theory; panel methods.

MECH 5004 [0.5 credit] (MCG 5304)
Compressible Non-Viscous Flow

Steady isentropic, frictional, and diabatic flow; shock waves; irrotational compressible flow, small perturbation theory and similarity rules; second-order theory and unsteady, one-dimensional flow.


MECH 5005 [0.5 credit]
Uninhabited Aircraft Systems Design

Theory of flight and air vehicle performance; propulsion systems; launch and recovery. Regulatory development; privacy policies. Mission design; sensor performance. Guidance, navigation, control and communications theory. System-level reliability; life cycle cost assessment.
Includes: Experiential Learning Activity

MECH 5006 [0.5 credit]
Solar Energy

This course will take an in-depth look at solar radiation fundamentals, solar collector design and performance, heat transfer characteristics of solar collectors, energy storage, passive and active thermal systems, photovoltaics and applications of solar energy for collection and utilization.

MECH 5008 [0.5 credit] (MCG 5308)
Experimental Methods in Fluid Mechanics

Fundamentals of techniques of simulation of fluid dynamic phenomena. Theoretical basis, principles of design, performance and instrumentation of ground test facilities. Applications to aerodynamic testing.
Includes: Experiential Learning Activity

MECH 5009 [0.5 credit] (MCG 5309)
Environmental Fluid Mechanics Relating to Energy Utilization

Characteristics of energy sources and emissions into the environment. The atmosphere; stratification and stability, equations of motion, simple winds, mean flow, turbulence structure and dispersion near the ground. Flow and dispersion in groundwater, rivers, lakes and oceans. Physical and analytical modeling of environmental flows.
Includes: Experiential Learning Activity
Also listed as MAAJ 5059.

MECH 5101 [0.5 credit] (MCG 5311)
Flight Dynamics and Automatic Flight Controls

Aircraft nonlinear equations of motion and their linearization; effect of stability and control derivatives on the open-loop dynamics response; autopilot design and aircraft stability and control augmentation; pilot-in-the-loop; aeroelastic effects on stability and control.
Includes: Experiential Learning Activity
Also listed as MAAJ 5151.

MECH 5103 [0.5 credit] (MCG 5328)
3D Machine Vision: From Robots to the Space Station

Through lectures and project work, this course introduces fundamental 3D machine vision methods (triangulation and time-of-flight), presents cutting-edge neural network approaches, and explores major engineering applications (e.g. robotics, autonomous vehicles, space navigation) where perception of the 3D environment is essential.

MECH 5105 [0.5 credit] (MCG 5315)
Orbital Mechanics and Space Control

Orbital dynamics and perturbations due to the Earth's figure, the sun, and the moon with emphasis on mission planning and analysis. Rigid body dynamics applied to transfer orbit and on-orbit momentum management and control of spacecraft. Effects of flexible structures on a spacecraft control system.
Includes: Experiential Learning Activity
Also listed as MAAJ 5155.

MECH 5106 [0.5 credit] (MCG 5121)
Space Mission Analysis and Design

Review of solar system and space exploration. Space mission design and geometry. Analysis of orbit design, transfers, interplanetary trajectories. Effect of environment on spacecraft design. Space propulsion and launch vehicle design. Launch sequence, windows, cost. Reusable launch systems.

MECH 5107 [0.5 credit] (AMM 5317)
Experimental Stress Analysis

Introduction to theory of elasticity. Photo-elasticity: types of polariscopes, two- and three-dimensional stress fields, frozen patterns. Photoelastic coatings. Strain gauges; gauge factors, sensitivity, calibration, and temperature compensation. Moire fringes, brittle lacquers, mechanical strain gauges.

MECH 5108 [0.5 credit] (MCG 5329)
Space Robotics

This course covers the full spectrum of manipulator robotics applied to in-orbit servicing, repair of spacecraft and removal of orbital debris as the first step towards developing a space infrastructure. It covers space manipulator missions, kinematics, dynamics, trajectory generation, control systems, and some special topics.

MECH 5201 [0.5 credit] (MCG 5321)
Methods of Energy Conversion

Technical, economic and environmental aspects of present and proposed large-scale systems of energy conversion.

MECH 5202 [0.5 credit] (MCG 5122)
Smart Structures

An introduction to the fundamentals of smart materials and structures: mechanisms and classification of the smart materials; their fundamental characteristics and operating principals; sensors and actuators design; design framework of smart structures; control experimentation of smart structures; application case studies.
Prerequisite(s): permission of the department.

MECH 5203 [0.5 credit] (MCG 5322)
Nuclear Engineering

Reactor design and safety requirement overview; reactor physics, chemistry and engineering, CANDU reactor design and operation; CANDU reactor fuel channels, thermalhydraulics and fuel; reactor safety design and analysis; IAEA and Canadian safety analysis requirements; reactor accidents; nuclear energy policy.

MECH 5204 [0.5 credit] (MCG 5483)
Fundamentals of Combustion

Emphasis on gas phase reacting flows. Background of combustion thermodynamics, diffusion mass transfer, and chemical kinetics. Detonations and deflagrations. Chemical and dynamic structure of flames. Gaseous flame propagation under laminar and turbulent conditions. Flame stabilization and extinction. Introduction to burning rate theory.
Also listed as MAAJ 5254.


MECH 5205 [0.5 credit] (MCG 5324)
Building Performance Simulation

During this course students will develop an understanding of the methodologies and theory employed historically and contemporarily in the Building Performance Simulation (BPS) field, develop capabilities for extending the functionality of BPS tools, and establish skills in applying BPS tools in research, analysis, and design.
Includes: Experiential Learning Activity
Also listed as MAAJ 5255.


MECH 5206 [0.5 credit] (MCG 5325)
Wind Engineering

Theoretical and practical areas pertinent to the operation of wind turbines. World energy needs, wind farms versus traditional power plants, global wind characteristics, efficient turbine design, electrical components, modes of turbine operation and control, mechanical design, economic and environmental concerns.

MECH 5300 [0.5 credit] (MCG 5330)
Engineering Acoustics

Review of acoustic waves in compressible fluids; acoustic pressure, intensity and impedance; physical interpretation and measurement; transmission through media; layers, in-homogeneous media, solids; acoustic systems; rooms, ducts, resonators, mufflers, properties of transducers; microphones, loudspeakers, computational acoustics.

MECH 5301 [0.5 credit] (MCG 5331)
Aeroacoustics

The convected wave equation; theory of subsonic and supersonic jet noise; propeller and helicopter noise; fan and compressor noise; boundary layer noise, interior noise; propagation in the atmosphere; sonic boom; impact on environment.
Includes: Experiential Learning Activity

MECH 5302 [0.5 credit] (MCG 5332)
Instrumentation Techniques

An introduction for the non-specialists to the concepts of digital and analog electronics with emphasis on data acquisition, processing and analysis. Topics covered include operational amplifiers, signal processing, digital logic systems, computer interfacing, noise in electronic systems. Hands-on sessions illustrate theory and practice.
Also listed as MAAJ 5352.

MECH 5304 [0.5 credit] (MCG 5334)
Computational Fluid Dynamics of Compressible Flows

Solution techniques for parabolic, elliptic and hyperbolic equations developed for problems of interest to fluid dynamics with appropriate stability considerations. A staged approach to solution of full Euler and Navier-Stokes equations is used. Grid generation techniques appropriate for compressible flows are introduced.
Also listed as MAAJ 5354.

MECH 5400 [0.5 credit] (MCG 5344)
Gas Turbine Combustion

Combustion fundamentals and gas turbine combustor design. Combustion fundamentals include fuel evaporation, chemistry of combustion, chemical kinetics and emissions formation and introduction to computational combustion modelling. Combustor design addresses the interrelationship between operational requirements and combustion fundamentals.
Precludes additional credit for MECH 5800 (MCG 5480) when MECH 5800 was offered with this topic.

MECH 5401 [0.5 credit] (MCG 5341)
Turbomachinery

Types of machines. Similarity: performance parameters; characteristics; cavitation. Velocity triangles. Euler equation: impulse and reaction. Radial pumps and compressors: analysis, design and operation. Axial pumps and compressors: cascade and blade-element methods; staging; off-design performance; stall and surge. Axial turbines. Current design practice.
Includes: Experiential Learning Activity
Also listed as MAAJ 5451.

MECH 5402 [0.5 credit] (MCG 5342)
Gas Turbines

Interrelationship among thermodynamic, aerodynamic, and mechanical design. Ideal and real cycle calculations. Cycle optimization; turbo-shaft, turbojet, turbofan. Component performance. Off-design performance; matching of compressor, turbine, nozzle. Twin-spool matching.

MECH 5403 [0.5 credit] (MCG 5343)
Advanced Thermodynamics

The course covers three major topics: review of fundamentals from a consistent viewpoint, properties and equations of state, and applications and special topics. The third topic includes an introduction to statistical thermodynamics.

MECH 5407 [0.5 credit] (MCG 5347)
Conductive and Radiative Heat Transfer

Analytical, numerical and analog solutions to steady-state and transient conduction heat transfer in multi-dimensional systems. Radiative heat exchange between black, grey, non-grey diffusive and specular surfaces, including effects of athermanous media.
Also listed as MAAJ 5457.

MECH 5408 [0.5 credit] (MCG 5348)
Convective Heat and Mass Transfer

Analogies between heat, mass and momentum transfer. Forced and free convection relations for laminar and turbulent flows analytically developed where possible and otherwise deduced from experimental results, for simple shapes and in heat exchangers. Mass transfer theory and applications.

MECH 5500 [0.5 credit] (MCG 5350)
Advanced Vibration Analysis

General theory of continuous and discrete multi-degree-of-freedom vibrating systems. Emphasis on numerical techniques of solving complex vibrating systems, with selected applications from aerospace, civil, and mechanical engineering.
Includes: Experiential Learning Activity
Also listed as MAAJ 5550.

MECH 5501 [0.5 credit] (MCG 5125)
Advanced Dynamics

Developing and applying the governing equations of motion for discrete and continuous mechanical systems. Includes Newton-Euler and Lagrangian formulations; classical and finite element approaches for continuous systems; and linear stability, frequency response, and propagation solution methods.
Includes: Experiential Learning Activity

MECH 5502 [0.5 credit] (MCG 5352)
Optimal Control Systems

Review of transfer function and state-space system descriptions. Elements of the optimal control problem. Variational calculus. Optimal state feedback control. Riccati equations. Optimal observers and Kalman-Bucy Filters. Extension to discrete time systems including an introduction to dynamic programming. Practical applications are emphasized throughout the course.

MECH 5503 [0.5 credit] (MCG 5353)
Robotics

The history of and introduction to robotics methodology. Robots and manipulators; homogeneous transformation, kinematic equations, solving kinematic equations, differential relationships, motion trajectories, dynamics. Control; feedback control, compliance, servomotors, actuators, external and internal sensors, grippers and vision systems. Microprocessors and their application to robot control. Programming.

MECH 5504 [0.5 credit] (MCG 5354)
Guidance, Navigation and Control

Guidance system classification, flight control systems, targeting, target tracking, sensing. Modern multivariable control analysis; design requirements, sensitivity, robustness, perturbations, performance analysis. Modern filtering and estimation techniques. Terrestrial navigation; tactical air navigation (TACAN), star trackers Guidance mission and performance. Aircraft, missile and spacecraft guidance and control.

MECH 5505 [0.5 credit] (MCG 5355)
Stability Theory and Applications

Fundamental concepts and characteristics of modern stability definitions. Sensitivity and variational equations; linear variational equations; phase space analysis; Lyapunov's direct method. Autonomous and nonautonomous systems; stability in first approximation; the effect of force type on stability; frequency method.
Also listed as MAAJ 5555.

MECH 5506 [0.5 credit] (MCG 5356)
Neuro and Fuzzy Control

Knowledge-based controllers. Fuzzy control: mathematics, relations, operations, approximate reasoning. Fuzzy knowledge base control and structure. Fuzzification, inference engine, defuzzification. Nonlinear, adaptive fuzzy control systems. Stability, Neuro-control: processing, learning. Adaptation of artificial neural systems: associative memories, algorithms, applications, and network implementation. Neurofuzzy systems: industrial applications.
Precludes additional credit for EACJ 5709 (ELG 5196).

MECH 5507 [0.5 credit] (MCG 5124)
Advanced Kinematics

Algebraic-geometry applications: kinematic calibration of serial and in-parallel robots; kinematic synthesis of planar, spherical, spatial mechanisms. Various DH-parametrisations, Jacobian formulations. Topics in: projective geometry; Cayley-Klein geometries; Plücker line coordinates; Gröbner bases; Grassmannians; kinematic mapping; Burmester theory. Emphasis on practical applications.
Includes: Experiential Learning Activity
Also listed as MAAJ 5557.

MECH 5508 [0.5 credit] (MCG 5326)
System Modelling, Dynamics and Control

The course provides an understanding of system modelling and the connection between energy domains. Within the temporal and/or frequency domains, system identification techniques and control aspects are explored for discrete and continuous systems along with lumped and distributed parameter models.

MECH 5509 [0.5 credit] (MCG 5327)
Nonlinear Systems Analysis & Controls

Introduction to nonlinear systems, stability of periodic solutions and limit cycles. Second-order nonlinear systems. Mathematical foundations for stability analysis, Lyapunov and LaSalle’s methods. Autonomous and non-autonomous systems. Input-Output stability formalisms. Basics of nonlinear control techniques based on Lyapunov methods.

MECH 5601 [0.5 credit] (MCG 5361)
Creative Problem Solving and Design

Problem-solving processes and how they can be applied in engineering design. Emphasis on learning methodologies rather than accumulating information. Techniques can be successfully applied in any engineering specialty.
Also listed as MAAJ 5657.

MECH 5602 [0.5 credit] (AMM 5362)
Failure Prevention (Fracture Mechanics and Fatigue)

Design of engineering structures to ensure against failure due to fatigue or brittle fracture. Nature of fatigue and brittle fracture; selection of suitable material, geometry, and inspection procedures for the load and environmental conditions.
Also listed as MAAJ 5652.

MECH 5603 [0.5 credit] (AMM 5381)
Lightweight Structures

Structural behaviour. Fundamentals of basic elasticity. Energy methods of structural analysis. Bending, shear, and torsion of open and closed multicell structures. Bending of plates. Structural idealization and its effects on open and closed sections. Structural stability.

MECH 5604 [0.5 credit] (AMM 5364)
Computational Metallurgy

Development of microstructure in alloys in solidification processes and post-solidification processing. Nucleation and growth of solid phase. Formation of a dendrite structure, macro and micro segregations. Pore formation in castings. Thermodynamic and kinetics of phase transformations and structure evolution in solid alloys.

MECH 5605 [0.5 credit] (MCG 5365)
Finite Element Analysis I

An introduction to the finite element methodology, with emphasis on applications to heat transfer, fluid flow and stress analysis. The basic concepts of Galerkin's method, interpolation, numerical integration, and isoparametric elements are taught using simple examples.
Also listed as MAAJ 5655.

MECH 5606 [0.5 credit] (MCG 5366)
Finite Element Analysis II

Time marching heat flow problems with linear and nonlinear analysis. Static plasticity. Time-dependent deformation problems; viscoplasticity, viscoelasticity, and dynamic analysis. Isoparametric elements and numerical integration are used throughout.

MECH 5607 [0.5 credit] (MCG 5367)
The Boundary Element Method (BEM)

Integral equations. The BIE for potential theory and for elastostatics in two-dimensions. Boundary elements and numerical integration schemes. Practical applications.
Includes: Experiential Learning Activity
Also listed as MAAJ 5656.

MECH 5609 [0.5 credit] (AMM 5123)
Microstructure and Properties of Materials

Essential microstructural features of metals and alloys: crystal structure, dislocations, grain boundaries. The importance of these features in controlling mechanical properties is emphasized. Analytical techniques observing microstructure in metals and other materials: TEM, SEM, electron diffraction, spectrometry.
Also listed as MAAJ 5659.

MECH 5700 [0.5 credit] (AMM 5345)
Surfaces and Coatings

Surface characteristics of solid materials and surface degradation/failure mechanisms including wear, fretting, oxidation, corrosion, and erosion are introduced. Coating methods including PVD, CVD, laser, thermal spray and electrochemical deposition are discussed in the context of failure prevention measures.
Also listed as MAAJ 5750.

MECH 5701 [0.5 credit] (AMM 5369)
Metallic Phases and Transformations

Thermodynamics of crystals, phase diagrams, principles of alloy phases, thermal analysis. Transformation rate and mechanisms. Short and long range diffusional transformations, diffusionless transformations. Phase transformations in engineering systems.
Also listed as MAAJ 5751.

MECH 5704 [0.5 credit] (AMM 5374)
Integrated Manufacturing Systems (CIMS)

Topics essential to CIMS including computer graphics, geometric modeling, numerically controlled machining, and flexible manufacturing. The fundamental data structures and procedures for computerization of engineering design, analysis and production.
Also offered at the undergraduate level, with different requirements, as MECH 4704, for which additional credit is precluded.

MECH 5705 [0.5 credit] (MCG 5375)
CAD/CAM

Computer aided design and manufacturing methodology through hands-on experience and state-of-the-art software. Topics include mathematical representation, solid modeling, drafting, mechanical assembly, mechanism design and CNC machining. CAD data exchange standards, rapid prototyping, concurrent engineering and design for X are also discussed.

MECH 5800 [0.5 credit] (MCG 5480)
Special Topics in Mechanical and Aerospace Engineering

Topic will vary from year to year.
Also listed as MAAJ 5850.

MECH 5801 [0.5 credit] (MCG 5489)
Special Topics in Mechanical and Aerospace Engineering

Topic will vary from year to year.

MECH 5802 [0.5 credit] (MCG 5483)
Special Topics in Mechanical and Aerospace Engineering

Topic will vary from year to year.
Also listed as MAAJ 5852.

MECH 5803 [0.5 credit] (MCG 5488)
Special Topics in Mechanical and Aerospace Engineering

Topic will vary from year to year.
Also listed as MAAJ 5853.

MECH 5804 [0.5 credit] (MCG 5384)
Special Topics in Mechanical and Aerospace Engineering

Topic will vary from year to year.
Also listed as MAAJ 5854.

MECH 5805 [0.5 credit] (MCG 5482)
Special Topics in Mechanical and Aerospace Engineering

Topic will vary from year to year.
Also listed as MAAJ 5855.

MECH 5806 [0.5 credit] (MCG 5486)
Special Topics in Mechanical and Aerospace Engineering

Topic will vary from year to year.

MECH 5807 [0.5 credit] (MCG 5487)
Special Topics in Mechanical and Aerospace Engineering

Topic will vary from year to year.
Also listed as MAAJ 5857.

MECH 5808 [0.5 credit] (MCG 5376)
Special Topics in Mechanical and Aerospace Engineering

Topic will vary from year to year.
Also listed as MAAJ 5858.

MECH 5809 [0.5 credit] (MCG 5382)
Special Topics in Mechanical and Aerospace Engineering

Topic will vary from year to year.

MECH 5906 [0.5 credit]
Directed Studies


MECH 5908 [1.5 credit] (MCG 5398)
Independent Engineering Study

Students pursuing a master's degree by course work carry out an independent study, analysis, and solution of an engineering problem or design project. The results are given in the form of a written report and presented at a departmental seminar.
Includes: Experiential Learning Activity

MECH 5909 [2.5 credits]
M.A.Sc. Thesis

Includes: Experiential Learning Activity

MECH 6909 [0.0 credit]
Ph.D. Thesis

Includes: Experiential Learning Activity

Note: Not all courses listed are offered in a given year. For an up-to-date statement of course offerings for the current session and to determine the term of offering, consult the class schedule at central.carleton.ca.

Summer session: some of the courses listed in this Calendar are offered during the summer. Hours and scheduling for summer session courses will differ significantly from those reported in the fall/winter Calendar. To determine the scheduling and hours for summer session classes, consult the class schedule at central.carleton.ca