Physics (PHYJ) - Joint Courses

Physics - Joint (PHYJ) Courses

With the exception of PHYS 5701 (PHY 5170) and PHYS 5302 (PHY 8132), which may be offered at either Carleton or the University of Ottawa, all PHYS courses are offered only at Carleton, and all PHYJ courses are offered only at the University of Ottawa.

PHYJ 5001 [0.5 credit] (PHY 5130)
Experimental Characterization Techniques in Materials Science, Physics, Chemistry, and Mineralogy
Survey of experimental techniques used in materials science, condensed matter physics, solid state chemistry, and mineralogy to characterize materials and solid substances. Diffraction. Spectroscopy. Microscopy and imaging. Other analytic techniques. Prerequisite(s): permission of the Department.

PHYJ 5003 [0.5 credit] (PHY 5342)
Computer Simulations in Physics
Advanced numerical methods to study large scale problems in the natural sciences; molecular dynamics, Langevin dynamics, Brownian dynamics methods. The use of different thermodynamic ensembles to compute experimentally relevant physical properties, and work with non-equilibrium situations. Methods to handle very large problems on parallel computers. Prerequisite(s): PHY 3355 (PHY 3755), PHY 3370 (PHY 3770) and familiarity with FORTRAN, Pascal or C.

PHYJ 5004 [0.5 credit] (PHY 5340)
Computational Physics I

PHYJ 5005 [0.5 credit] (PHY 5341)
Computational Physics II

PHYJ 5006 [0.5 credit] (PHY 5362)
Computational Methods in Material Sciences
Introduction to modern computational techniques used in material science research. Classical molecular dynamics, classical and quantum Monte Carlo methods, plane-wave based electronic band structure calculations, Carr-Parrinello quantum molecular dynamics. Applications to condensed matter systems: basic simulation techniques, force-field based methods, first-principles quantum mechanical methods. Prerequisite(s): permission of the Department.

PHYJ 5102 [0.5 credit] (PHY 5361)
Nonlinear Dynamics in the Natural Sciences
Differential and difference equations, Fourier series and data analysis, stability analysis, Poincaré maps, local bifurcations, routes to chaos and statistical properties of strange attractors. Applications of these concepts to specific problems in condensated matter physics, molecular physics, fluid mechanics, dissipative structures, and evolutionary systems. Prerequisite(s): permission of the Department.

PHYJ 5310 [0.5 credit] (PHY 5310)
Advanced Optics and Photonics
Introduction to laser physics: optical resonators, light-matter interaction, basic operation of lasers, coherence, light control and manipulation, beam optics, Fourier optics. Guided wave optics: light propagation, allowed modes, dispersion. Prerequisite(s): permission of the Department.

PHYJ 5311 [0.5 credit] (PHY 5311)
Quantum Optics I
Classical and semi-classical light-matter interaction; gauges and energy conservation; two level systems in the resonant, under-resonant and over-resonant limit; time-dependent perturbation theory and Fermi's golden rule; semi-classical laser theory; Landau-Zener tunneling and multi-photon transitions; tunnel ionization and multi-photon ionization. Prerequisite(s): permission of the Department.

PHYJ 5312 [0.5 credit] (PHY 5312)
Quantum Optics II
Quantum light-matter interaction; quantization of the light field and of Schrödinger equation; number states and coherent states; photon emission and absorption; two-photon decay; photoelectric effect; Lamb shift, line-width and renormalization; Casimir effect; multi-photon processes; density operator; quantum theory of decay; quantum laser theory. Prerequisite(s): permission of the Department.
PHYJ 5322 [0.5 credit] (PHY 5322)
Biological Physics
Biological phenomena studied using techniques of physics. Key components of cells. Physical concepts relevant to cellular phenomena: Brownian dynamics, fluids, suspensions, entropy driven phenomena, chemical forces and self-assembly. Biological molecules. Enzymes. Molecular motors. Nerve impulses. Precludes additional credit for PHY 4322. Also offered at the undergraduate level, with different requirements, as PHYS 4322, for which additional credit is precluded.

PHYJ 5330 [0.5 credit] (PHY 5330)
Fibre Optics Communications

PHYJ 5331 [0.5 credit] (PHY 5331)
Fiber Optics Fundamentals and Applications

PHYJ 5332 [0.5 credit]
Nonlinear Optics
Nonlinear optical susceptibility; wave equation description of nonlinear optics processes: second harmonic generation, intensity dependent refractive index, sum- and frequency-generation, parametric amplification; quantum mechanical theory of nonlinear optics; Brillouin and Raman scattering; the electro-optic effect; nonlinear fibre optics and solitons.

PHYJ 5364 [0.5 credit] (PHY 5364)
Nanotechnology and Modern Methods in Biophysics
Modern experimental techniques and nanotechnology used in biophysics. Topics include biosensors, microfluidics, single molecule techniques, DNA sequencing technologies, microfabrication, nanoscale electrokinetics, atomic force microscopy, fluorescence and confocal microscopy, cell chips, etc. Course includes several hands-on experiments. Includes: Experiential Learning Activity

PHYJ 5388 [0.5 credit] (PHY 5388)
Photons and Atoms
Atomic, molecular structure and transitions, semi-classical light-matter interaction; two level systems; time-dependent perturbation theory, Fermi's golden rule; optical Bloch equations; coherent control; optical interactions with three-level systems, electromagnetically induced transparency; optical forces; laser cooling; Bose-Einstein condensation; atom optics and interferometers; quantization of light.

PHYJ 5389 [0.5 credit] (PHY 5389)
Quantum Theory of Light
Quantum cryptography; entanglement; density operators; Bell's inequalities; quantization of light field; Lamb shift; Casimir effect; vacuum; quantum optical states; Photon, homodyne detectors; quasi-probability functions; beam splitters; classical, quantum coherence; Hanbury Brown and Twiss effect, Hong-Ou-Mandel interference; quantum nonlinear optics, light-matter interaction, open systems.

PHYJ 5390 [0.5 credit] (PHY 5390)
Seminar in Quantum Science and Technology
This course will reflect the interdisciplinary nature of the rapidly advancing field of quantum science and technology. The wide-range of topics include: foundations of quantum mechanics and quantum information, quantum materials, quantum communication, quantum sensing and metrology, quantum computing and simulations.

PHYJ 5391 [0.5 credit] (PHY 5391)
Quantum Materials, Nanostructures and Devices
The course covers the electronic and optical properties of semiconductor nanostructures (quantum wells, wires and dots), topological insulators, 2D crystals, discussing single particle properties, many-electron description, response functions and computational tools. Application in single electron transistors, lasers, solar cells, Majorana quantum circuits will be covered.

PHYJ 5392 [0.5 credit] (PHY 5392)
Introduction to Nanoscience
Nanoscience with photons (ray and wave optics), nanoscience with charged particles (light matter interaction, SEM, TEM), nanoscience with physical probes.

PHYJ 5401 [0.5 credit] (PHY 5100)
Solid State Physics I

PHYJ 5402 [0.5 credit] (PHY 5110)
Solid State Physics II
PHYJ 5403 [0.5 credit] (PHY 5151)
Type I and II Superconductors
Prerequisite(s): PHY 4370 or permission of the Department.

PHYJ 5404 [0.5 credit] (PHY 6371)
Topics in Mössbauer Spectroscopy
Prerequisite(s): permission of the Department.

PHYJ 5406 [0.5 credit] (PHY 5380)
Semiconductor Physics I
Prerequisite(s): PHY 4380 or permission of the Department.

PHYJ 5408 [0.5 credit] (PHY 5381, PHY 5781)
Semiconductor Physics II: Optical Properties
Prerequisite(s): PHY 4380 or permission of the Department.

PHYJ 5409 [0.5 credit] (PHY 5951)
Low Temperature Physics II
Prerequisite(s): PHY 4355 or permission of the Department.

PHYJ 5501 [0.5 credit]
Charged Particle Dynamics

PHYJ 5502 [0.5 credit] (PHY 5740)
Physique Numérique I
Prerequisite(s): permission of the Department.
Physics, Chemistry and Characterization of Mineral Systems
The materials science of mineral systems such as the network and layered silicates. In-depth study of the relations between mineralogically relevant variables such as: atomic structure, crystal chemistry, site populations, valence state populations, crystallization conditions. Interpretation and basic understanding of characterization tools.
Prerequisite(s): permission of the Department.

Ion Collisions in Solids

Advanced Quantum Mechanics II
Prerequisite(s): PHY 5170 and permission of the Department.

Physique Biologique
Precludes additional credit for PHY 4722.
Offert également, avec des exigences différentes, sous la cote PHY 4722.

Physics of Semiconductor Superlattices
Fundamental physics of two-dimensional quantized semiconductor structures. Electronic and optical properties of superlattices and quantum wells. Optical and electronic applications. This course is intended for students registered for the Ph.D. in semiconductor physics research.
Prerequisite(s): advanced undergraduate or graduate course in solid state physics and permission of the Department.

Physique des super-réseaux à semi-conducteurs
Physique fondamentale des structures quantiques bi-dimensionnelles à semiconducteurs. Propriétés électroniques et optiques des super-réseaux et puits quantiques. Applications à l'électronique et à l'optique. Ce cours est destiné aux étudiants et aux étudiantes inscrits au doctorat en physique des semiconducteurs.
Prerequisite(s): permission of the Department.