Data Science (Collaborative Specialization)

Program Requirements
Students enrolled in the Collaborative Specialization in Data Science must meet the requirements of their respective home units as well as those of the Collaborative Specialization. The requirements of the Collaborative Specialization do not, however, add to the number of credits students are required to accumulate by their home unit and the credit value of the degree remains the same. Consult the individual programs for detailed program requirements.

M.Sc. Biology with Specialization in Data Science (5.0 credits)
Requirements:
1. 0.5 credit in approved coursework
2. 0.5 credit in: DATA 5000 [0.5] Data Science Seminar
3. 4.0 credits in:
Total Credits 5.0

M.A.Sc. Biomedical Engineering with Specialization in Data Science (5.0 credits)
Requirements:
1. 0.5 credit in:
 BIOM 5010 [0.5] Introduction to Biomedical Engineering
2. 0.5 credit in: DATA 5000 [0.5] Data Science Seminar
3. 1.0 credit in BIOM (BMG) courses
4. 0.5 credit in elective courses taken either at Carleton University or University of Ottawa with the approval of the OCIBME Director or Associate Director
5. 2.5 credits in:
6. 0.0 credit in:
 BIOM 5800 [0.0] Biomedical Engineering Seminar
Total Credits 5.0

M.B.A. with Concentration in Business Analytics (2.25 credits)
Listed below are the requirements for the Concentration in Business Analytics. For a full description of M.B.A. requirements, visit the Business page.

Concentration requirements (2.25 credits):
1. 1.75 credits in:
 ACCT 5012 [0.25] Performance Measurement and Control
 DATA 5000 [0.5] Data Science Seminar
 FINA 5511 [0.25] Investments
 ITIS 5431 [0.25] Business Analytics for Managers
ITIS 5432 [0.25] Business Analytics Methods
TOMS 5303 [0.25] Managing Projects
2. 0.5 credit in elective concentration course from: 0.5
 BUSI 6905 [0.5] Advanced Statistical Methods for Business Research
 ECON 5027 [0.5] Econometrics I
 ECON 5055 [0.5] Financial Econometrics
 STAT 5602 [0.5] Analysis of Categorical Data
 STAT 5702 [0.5] Modern Applied and Computational Statistics
 STAT 5703 [0.5] Data Mining
Total Credits 2.25

Master of Cognitive Science with Specialization in Data Science (5.0 credits)
Requirements - Thesis Option (5.0 credits)
1. 0.5 credit in:
 DATA 5000 [0.5] Data Science Seminar
2. 0.5 credit in:
 CGSC 5100 [0.5] Issues in Cognitive Science
3. 0.5 credit in:
 CGSC 5101 [0.5] Experimental Methods and Statistics
4. 1.0 credit in CGSC or other approved courses, from two different cognitive disciplines, selected in consultation with the graduate supervisor.
5. 2.5 credits in:
 CGSC 5909 [2.5] M. Cog. Thesis (The thesis must be approved as fulfilling the data science requirement and be supervised by a faculty member working in a data science related field.)
6. Preparation of research for presentation at the Carleton Cognitive Science Spring Conference.
Total Credits 5.0

Requirements - Research Project Option (5.0 credits)
1. 0.5 credit in:
 DATA 5000 [0.5] Data Science Seminar
2. 0.5 credit in:
 CGSC 5100 [0.5] Issues in Cognitive Science
3. 0.5 credit in:
 CGSC 5101 [0.5] Experimental Methods and Statistics
4. 1.5 credits from:
 CGSC 5001 [0.5] Cognition and Artificial Cognitive Systems
 CGSC 5002 [0.5] Experimental Research in Cognition
 CGSC 5003 [0.5] Cognition and Language
 CGSC 5004 [0.5] Cognition and Conceptual Issues
 CGSC 5005 [0.5] Cognition and Neuroscience
5. 1.0 credit in CGSC or other approved courses selected in consultation with the graduate supervisor.
6. 1.0 credit in:
 1.0
CGSC 5908 [1.0] Research Project (Project must be approved as fulfilling the data science requirement and be supervised by a faculty member working in a data science related field.)

7. Preparation of research for presentation at the Cognitive Science Spring Conference.

Total Credits 5.0

M.A. Communication with Specialization in Data Science (5.0 credits)

Requirements - Coursework Option (5.0 credits)

1. 0.5 credit in: 0.5
 DATA 5000 [0.5] Data Science Seminar

2. 1.0 credit in: 1.0
 COMS 5101 [1.0] Foundations of Communication Studies

3. 0.5 credit in: 0.5
 COMS 5605 [0.5] Approaches to Communication Research

4. 0.5 credit in: 0.5
 COMS 5225 [0.5] Critical Data Studies

5. 0.5 credit from: 0.5
 COMS 5203 [0.5] Communication, Technology, Society
 COMS 5221 [0.5] Science and the Making of Knowledge
 COMS 5224 [0.5] Internet, Infrastructure, Materialities

6. 2.0 credits in electives 2.0

Total Credits 5.0

Requirements - Research Essay Option (5.0 credits)

1. 0.5 credit in: 0.5
 DATA 5000 [0.5] Data Science Seminar

2. 1.0 credit in: 1.0
 COMS 5101 [1.0] Foundations of Communication Studies

3. 0.5 credit in: 0.5
 COMS 5605 [0.5] Approaches to Communication Research

4. 0.5 credit in: 0.5
 COMS 5225 [0.5] Critical Data Studies

5. 1.0 credit in: 1.0
 COMS 5908 [1.0] Research Essay

Research Essay on a Data Science topic approved by the Advisory Board representative from Communication in consultation with the Graduate Committee of the Institute of Data Science.

6. 0.5 credit in electives 0.5

Total Credits 5.0

Requirements - Thesis Option (5.0 credits)

1. 0.5 credit in: 0.5
 DATA 5000 [0.5] Data Science Seminar

2. 1.0 credit from: 1.0
 COMP 5100 [0.5] Topics in Artificial Intelligence
 COMP 5101 [0.5] Distributed Databases and Transaction Processing Systems
 COMP 5107 [0.5] Statistical and Syntactic Pattern Recognition
 COMP 5108 [0.5] Algorithms in Bioinformatics
 COMP 5111 [0.5] Data Management for Business Intelligence
 COMP 5112 [0.5] Algorithms for Data Science
 COMP 5204 [0.5] Computational Aspects of Geographic Information Systems
 COMP 5209 [0.5] Visual Analytics
 COMP 5305 [0.5] Advanced Database Systems
 COMP 5306 [0.5] Data Integration
 COMP 5307 [0.5] Knowledge Representation
 COMP 5308 [0.5] Topics in Medical Computing
 COMP 5401 [0.5] Electronic Commerce Technologies
 COMP 5703 [0.5] Algorithm Analysis and Design
 COMP 5704 [0.5] Parallel Algorithms and Applications in Data Science

3. 1.0 credit in course work 1.0

4. 2.5 credits in: 2.5
 COMP 5905 [2.5] M.C.S. Thesis

Total Credits 5.0

Notes:

1. Course selections must include a minimum of 1.5 credits of OCICS courses in three different research areas, and must include at least (see OCICS course listing): 0.5 credit in software engineering, 0.5 credit in the theory of computing, and 0.5 credit in either computer applications or computer systems.

2. M.C.S. Thesis must be in an area of Data Science and requires approval from the Department. Each candidate submitting a thesis will be required to undertake an oral defence of the thesis.

M.A. Economics with Specialization in Data Science (4.0 credits)

Requirements - Coursework option (4.0 credits)
1. 1.5 credits in: 1.5
 ECON 5020 [0.5] Microeconomic Theory
 ECON 5021 [0.5] Macroeconomic Theory
 ECON 5027 [0.5] Econometrics I

2. 0.5 credit in: 0.5
 DATA 5000 [0.5] Data Science Seminar

3. 0.5 credit in: 0.5
 ECON 5029 [0.5] Methods of Economic Research
 including a research paper on a data science related topic

4. 1.0 credit in 1.0
 ECON approved by the M.A. Supervisor of the Department of Economics, including at least 0.5 credit
 from ECON 5055, ECON 5361, ECON 5362, ECON 5700, ECON 5712, ECON 5713

5. 0.5 credit in 0.5
 Data Science elective (which may be an additional course from the preceding list) approved by the M.A. Supervisor of the Department of Economics

Total Credits 4.0

Requirements - Thesis option (4.0 credits)

1. 1.5 credits in: 1.5
 ECON 5020 [0.5] Microeconomic Theory
 ECON 5021 [0.5] Macroeconomic Theory
 ECON 5027 [0.5] Econometrics I

2. 0.5 credit in: 0.5
 DATA 5000 [0.5] Data Science Seminar

3. 1.5 credit in: 1.5
 ECON 5909 [1.5] M.A. Thesis
 on a data science topic approved by the Data Science governance committee

4. 0.5 credit from: 0.5
 ECON 5055 [0.5] Financial Econometrics
 ECON 5361 [0.5] Labour Economics I
 ECON 5362 [0.5] Labour Economics II
 ECON 5700 [0.5] Social and Economic Measurement
 ECON 5712 [0.5] Micro-Econometrics
 ECON 5713 [0.5] Time-Series Econometrics

Total Credits 4.0

M.A.Sc. Electrical and Computer Engineering with Specialization in Data Science (5.0 credits)

Requirements - by Thesis (5.0 credits)

1. 0.5 credit in: 0.5
 DATA 5000 [0.5] Data Science Seminar

2. 0.5 credit from data science elective courses: 0.5
 SYSC 5001 [0.5] Simulation and Modeling
 SYSC 5003 [0.5] Discrete Stochastic Models
 SYSC 5004 [0.5] Optimization for Engineering Applications
 SYSC 5101 [0.5] Design of High Performance Software
 SYSC 5103 [0.5] Software Agents
 SYSC 5104 [0.5] Methodologies For Discrete-Event Modeling And Simulation
 SYSC 5201 [0.5] Computer Communication
 SYSC 5207 [0.5] Distributed Systems Engineering
 SYSC 5300 [0.5] Advanced Health Care Engineering
 SYSC 5303 [0.5] Interactive Networked Systems and Telemedicine
 SYSC 5306 [0.5] Mobile Computing Systems
 SYSC 5401 [0.5] Adaptive and Learning Systems
 SYSC 5404 [0.5] Multimedia Compression, Scalability, and Adaptation
 SYSC 5405 [0.5] Pattern Classification and Experiment Design
 SYSC 5407 [0.5] Planning and Design of Computer Networks
 SYSC 5500 [0.5] Designing Secure Networking and Computer Systems
 SYSC 5703 [0.5] Integrated Database Systems
 SYSC 5706 [0.5] Analytical Performance Models of Computer Systems

3. 3.0 credits in courses 3.0

4. 0.5 credit in: 0.5
 SYSC 5900 [0.5] Systems Engineering Project
 in the area of data science

Total Credits 5.0

Requirements - by Coursework (5.0 credits)

1. 0.5 credit in: 0.5
 DATA 5000 [0.5] Data Science Seminar
<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>SYSC 5001</td>
<td>Simulation and Modeling</td>
<td>0.5</td>
</tr>
<tr>
<td>SYSC 5003</td>
<td>Discrete Stochastic Models</td>
<td>0.5</td>
</tr>
<tr>
<td>SYSC 5004</td>
<td>Optimization for Engineering Applications</td>
<td>0.5</td>
</tr>
<tr>
<td>SYSC 5101</td>
<td>Design of High Performance Software</td>
<td>0.5</td>
</tr>
<tr>
<td>SYSC 5103</td>
<td>Software Agents</td>
<td>0.5</td>
</tr>
<tr>
<td>SYSC 5104</td>
<td>Methodologies For Discrete-Event Modeling And Simulation</td>
<td>0.5</td>
</tr>
<tr>
<td>SYSC 5201</td>
<td>Computer Communication</td>
<td>0.5</td>
</tr>
<tr>
<td>SYSC 5207</td>
<td>Distributed Systems Engineering</td>
<td>0.5</td>
</tr>
<tr>
<td>SYSC 5300</td>
<td>Advanced Health Care Engineering</td>
<td>0.5</td>
</tr>
<tr>
<td>SYSC 5303</td>
<td>Interactive Networked Systems and Telemedicine</td>
<td>0.5</td>
</tr>
<tr>
<td>SYSC 5306</td>
<td>Mobile Computing Systems</td>
<td>0.5</td>
</tr>
<tr>
<td>SYSC 5401</td>
<td>Adaptive and Learning Systems</td>
<td>0.5</td>
</tr>
<tr>
<td>SYSC 5404</td>
<td>Multimedia Compression, Scalability, and Adaptation</td>
<td>0.5</td>
</tr>
<tr>
<td>SYSC 5405</td>
<td>Pattern Classification and Experiment Design</td>
<td>0.5</td>
</tr>
<tr>
<td>SYSC 5407</td>
<td>Planning and Design of Computer Networks</td>
<td>0.5</td>
</tr>
<tr>
<td>SYSC 5500</td>
<td>Designing Secure Networking and Computer Systems</td>
<td>0.5</td>
</tr>
<tr>
<td>SYSC 5703</td>
<td>Integrated Database Systems</td>
<td>0.5</td>
</tr>
<tr>
<td>SYSC 5706</td>
<td>Analytical Performance Models of Computer Systems</td>
<td>0.5</td>
</tr>
</tbody>
</table>

M.Sc. Health Sciences with Specialization in Data Science (5.5 credits)

Requirements (5.5 credits)

1. **1.0 credits in:**
 - HLTH 5901 [0.5] Advanced Topics in Interdisciplinary Health Sciences
 - HLTH 5902 [0.5] Seminars in Interdisciplinary Health Sciences for MSc

2. **0.5 credits in:**
 - DATA 5000 [0.5] Data Science Seminar

3. **Completion of:**
 - HLTH 5905 [0.0] Final Research Seminar Presentation for MSc

4. **4.0 credits in:**
 - HLTH 5909 [4.0] MSc Thesis

5. Twice-yearly meetings with the thesis Graduate Advisory Committee, with students meeting a level of progress as determined by the Committee.

Total Credits

Note: The final research seminar presentation must be completed within one month of the thesis defence.