Earth Sciences

This section presents the requirements for programs in:

- M.Sc. Earth Sciences
- M.Sc. Earth Sciences with Specialization in Chemical and Environmental Toxicology
- Ph.D. Earth Sciences
- Ph.D. Earth Sciences with Specialization in Chemical and Environmental Toxicology

Program Requirements

M.Sc. Earth Sciences (5.0 credits)

Requirements:
1. 1.5 credit in course work, 0.5 credit of which may be at the senior undergraduate level
2. 3.5 credits in:
3. A pre-defence public lecture, preceding the oral examination, based on the thesis research
4. 0.0 credit in: participation in the OCGC Seminar Series. Each student gives a presentation of one lecture (open to all members of the OCGC) describing the candidate's research study within 16 months of the candidate's registration in the M.Sc. program.

Total Credits 5.0

M.Sc. Earth Sciences with Specialization in Chemical and Environmental Toxicology (5.0 credits)

Requirements:
1. 0.5 credit in:
 - BIOL 6402/ CHEM 5708 [0.5] Principles of Toxicology
 - or BIOL 6403/ CHEM 5705 [0.5] Ecotoxicology
2. 0.5 credit in:
 - BIOL 6405/ CHEM 5805 [0.5] Seminar in Toxicology
3. 0.5 credit in additional course work
4. 3.5 credits in:
5. A pre-defence public lecture, preceding the oral examination, based on the thesis research
6. 0.0 credit: participation in the OCGC Seminar Series. Each student gives a presentation of one lecture (open to all members of the OCGC) describing the candidate's research study within 16 months of the candidate's registration in the M.Sc. program.

Total Credits 5.0

Ph.D. Earth Sciences (10.0 credits)

Requirements:
1. 1.0 credit of course work at the graduate level. Additional courses may be prescribed by the thesis advisory committee
2. ERTH 6908 [0.0] Ph.D. Comprehensive Examination (Conducted by the thesis advisory committee. Includes the presentation of a thesis proposal and involves three areas of geoscience specialization chosen by the student's advisory committee and approved by the Director of the Ottawa-Carleton Geoscience Centre)
3. 9.0 credits in:
 - ERTH 6909 [9.0] Ph.D. Thesis (defended at an oral examination before an examination board that includes an external examiner)
4. 0.0 credit: participation in the OCGC Seminar Series. Each student gives a presentation of one lecture (open to all members of the OCGC) describing the candidate's research study within 16 months of the candidate's registration in the Ph.D. program.
5. Fulfilment of residence requirement: at least four terms of full-time study

Total Credits 10.0

Ph.D. Earth Sciences with Specialization in Chemical and Environmental Toxicology (10.0 credits)

Requirements:
1. 9.0 credits in:
 - ERTH 6909 [9.0] Ph.D. Thesis (a research thesis on a topic in toxicology supervised by a faculty member of the Collaborative Program in Chemical and Environmental Toxicology, defended at an oral examination before an examination board that includes an external examiner)
2. A pre-defence public lecture, preceding the oral examination, based on the thesis research
3. 1.0 credit in:
 - BIOL 6402/ CHEM 5708 [0.5] Principles of Toxicology
 - or BIOL 6405/ CHEM 5805 [0.5] Seminar in Toxicology
4. 0.0 credit in: participation in the OCGC Seminar Series. Each student gives a presentation of one lecture (open to all members of the OCGC) describing the candidate's research study within 16 months of the candidate's registration in the Ph.D. program.
5. Fulfilment of residence requirement: at least four terms of full-time study

Regulations

See the General Regulations section of this Calendar.
A grade of B- or higher is required for each course counted towards the Master's degree.

Regulations

See the General Regulations section of this Calendar.

Admission

The requirement for admission to the program is an Honours B.Sc. degree, with at least high honours standing, in geology or a related discipline.

Admission

The requirement for admission to the Ph.D. Program is an M.Sc. degree in Earth Sciences or a related discipline. A grade of B- or higher is required for each course to be counted.

Earth Sciences (ERTH) Courses

ERTH 5001 [0.5 credit] (GEO 5301)

Seminars in Earth Sciences I

One-term modular courses covering a spectrum of Earth Science topics and current research problems, ranging from the geology and geophysics of the solid Earth, to its surface environment and crustal resources. Course complements ERTH 5002.

Precludes additional credit for Students may not take a module for credit that is offered by their supervisor, but may do so with the permission of the OCGC Director.

A minimum of four modules offered per term, three must be completed to obtain course credit. Choice of modules must be approved by the OCGC Director.

ERTH 5002 [0.5 credit] (GEO 5302)

Seminars in Earth Sciences II

One-term modular courses covering a spectrum of Earth Science topics and current research problems, ranging from the geology and geophysics of the solid Earth, to its surface environment and crustal resources. Course complements ERTH 5001.

Precludes additional credit for Students may not take a module for credit that is offered by their supervisor, but may do so with the permission of the OCGC Director.

A minimum of four modules offered per term, three must be completed to obtain course credit. Choice of modules must be approved by the OCGC Director.

ERTH 5104 [0.5 credit] (GEO 5114)

Mineralogy

An advanced course covering selected topics in mineralogy, such as crystallography, crystal chemistry, crystal structure, mineralogy of rock-forming mineral groups, and instrumental methods in mineralogical research, such as use of electronic optical instruments, spectroscopy, and X-ray crystallography; seminar presentations and practical exercises.

ERTH 5105 [0.5 credit] (GEO 5105)

Thermodynamics, Kinetic Theory, and Metamorphic Petrology

Phase equilibria, phase diagrams, and the kinetics of mineral reactions; mass transfer; regional and global aspects of metamorphic petrogenesis. Course may include one or two weeks of field-based instruction with costs borne by students.

Includes: Experiential Learning Activity

ERTH 5202 [0.5 credit] (GEO 5122)

Advanced Igneous Petrology

Integrates physical and chemical processes with the dynamics of magmatic systems to understand igneous processes. Course may involve a field trip with costs to be paid by students.

Includes: Experiential Learning Activity

ERTH 5204 [0.5 credit] (GEO 5124)

Geology and Geochemistry of Ore Deposits

Advanced aspects of geology, geochemistry, genesis, and exploration of ore deposits. Laboratory and field examination of different ore deposit types and their host rocks.

Includes: Experiential Learning Activity

ERTH 5206 [0.5 credit] (GEO 5306)

Hydrothermal Ore Deposits

Advanced economic geology course on hydrothermal ore deposits including geology and geochemistry, physical and chemical controls on mineralization, recognition and characterization of ore-fluid reservoirs, nature of large-scale fluid flow and alteration, and applications to exploration.

ERTH 5215 [0.5 credit] (GEO 5115)

Natural Hazards in Canada - Risk and Impact

Also listed as IPIS 5505.

Also offered at the undergraduate level, with different requirements, as ERTH 4815, for which additional credit is precluded.

ERTH 5301 [0.5 credit] (GEO 5131)

Siliciclastic Sedimentology

Origin and significance of physical sedimentary processes and structures. Analysis of ancient siliciclastic depositional environments in a facies model and sequence stratigraphic framework. Course involves lectures, seminars and field excursions.

Includes: Experiential Learning Activity
ERTH 5305 [0.5 credit] (GEO 5135)
Carbonate Sedimentology
Aspects of modern depositional systems, dynamic facies models, sequence stratigraphy, mineralogy, and diageneasis of carbonate sediments. The practical part of the course will consist of a field-laboratory project that integrates various techniques in carbonate sedimentology (mapping, petrography, staining, cathodoluminescence, fluorescence, SEM).
Includes: Experiential Learning Activity

ERTH 5306 [0.5 credit] (GEO 5136)
Paleobiology
Extinctions, micro- and macro-evolutionary processes, long-term trends and cycles in the Phanerozoic; functional morphology; application of invertebrates to biostratigraphy, paleoceanography and paleolimnology.

ERTH 5307 [0.5 credit]
Evolutionary Developmental Biology
This course explores the mechanistic basis of organismic evolution from genetic, morphogenetic and epigenetic perspectives, within a phylogenetic context of living and extinct vertebrates.
Includes: Experiential Learning Activity

ERTH 5308 [0.5 credit]
Advanced Micropaleontology
Paleobiology, biostratigraphy and paleoecology of microfossils in the context of paleoceanography, paleolimnology and paleoclimatology. Course may involve a field trip with costs to be paid by students.
Includes: Experiential Learning Activity

ERTH 5309 [0.5 credit] (GEO 5139)
Glacial and Periglacial Geology
An examination of various sedimentary environments associated with glacial and periglacial processes and their significance for mineral exploration and environmental geochemistry. Study of cold climate non-glacial conditions and the development of permafrost and permafrost-related features, including the effect of groundwater flow on permafrost distribution.

ERTH 5302 [0.5 credit] (GEO 5134)
Environmental Isotopes and Groundwater Geochemistry
Stable environmental isotopes (18O/2H/13C/34S/15N) in studies of groundwater origin and flow, and geothermal studies. Groundwater dating techniques involving tritium and radio-carbon, and exotic radioisotopes (e.g.,36Cl/39Ar/85Kr). Low temperature aqueous geochemistry and mineral solubility with emphasis on the carbonate system. Some applications to paleoclimatology will be discussed.

ERTH 5306 [0.5 credit] (GEO 5136)
Techniques of Groundwater Resources Evaluation
Governing groundwater flow equations, initial and boundary conditions; simple numerical solutions (spreadsheets); complex numerical solutions (commercial software); and analytical solutions. Applications: aquifer response test analysis, capture zone analysis, groundwater flow modeling, water budgeting, and aquifer vulnerability assessment.

ERTH 5307 [0.5 credit] (GEO 5137)
Aqueous Inorganic Geochemistry and Modelling
Aqueous speciation, solubility of metals, minerals and gas, reaction kinetics and equilibria. Chemistry and dynamics of groundwaters and hydrothermal fluids.

ERTH 5308 [0.5 credit] (GEO 5140)
Theory of Flow and Contaminant Transport in Geological Materials
Development of governing groundwater flow equations and solute transport equations from first principles, and application of principles in case studies. Topics may include forces and potentials, fluids, geological materials, contaminants, case studies.
Includes: Experiential Learning Activity
Prerequisite(s): undergraduate hydrogeology or instructor's permission.

ERTH 5309 [0.5 credit]
Reactive Transport Modelling
Introduction to the theory of numerical models and application of reactive transport models in hydrogeology. Focus will be on development of appropriate conceptual models of flow, transport and bio- and geochemical reactions and simulation of these conceptual models using reactive transport codes.

ERTH 5311 [0.5 credit]
Precambrian Geology
Geology and tectonic history of the Canadian Shield, emphasizing modern four-dimensional interpretations (2D mapping, depth, time); comparison and correlation with other Precambrian shields; global Precambrian tectonic evolution through review of continental reconstructions; Precambrian mineral deposits; field trips and research projects.
Includes: Experiential Learning Activity
ERTH 5503 [0.5 credit] (GEO 5153)
Computer Techniques in the Earth Sciences
A practical course in the application of computer techniques in the acquisition and interpretation of geoscientific data. Topics may include: remote sensing and geographic information systems; geostatistical analysis techniques; analysis and modeling of geoscientific data.
Includes: Experiential Learning Activity
Prerequisite(s): permission of the Department.

ERTH 5507 [0.5 credit] (GEO 5157)
Tectonic Processes Emphasizing Geochronology and Metamorphism
Applications of empirical, analytical and quantitative techniques to problems in regional geology and crustal tectonics; orogenic processes; heat and metamorphism; isotopic geochronology as applied to thermal history.

ERTH 5600 [0.5 credit] (GEO 5160)
Chemistry of the Earth
An examination of the composition of the mantle and crust in selected tectonic settings, such as subduction zones and hot spots. Topics may include how geochemical data constrain geodynamic settings of study areas.

ERTH 5603 [0.5 credit] (GEO 5163)
Stable Isotope Geochemistry

ERTH 5609 [0.5 credit] (GEO 5169)
Radiogenic Isotope Geochemistry
Nucleosynthesis; chemical differentiation of the Earth. Evolution of large-scale isotopic reservoirs. Isotopic tracers (143Nd/144Nd, 87Sr/86Sr, common Pb). Geochronology; fundamentals and application of Sm/Nd, Rb/Sr, U/Pb, K/Ar and Lu/Hf methods. Evolution of the solid Earth from the isotopic perspective.

ERTH 5701 [0.5 credit] (GEO 5171)
Physics of the Earth
The physics and dynamics of the solid Earth: seismology; gravitational and magnetic fields, thermal state. Geophysical constraints on the structure and composition of the interior. Geodynamic processes. Also offered at the undergraduate level, with different requirements, as ERTH 4801, for which additional credit is precluded.

ERTH 5703 [0.5 credit] (GEO 5173)
Structural Geology
Deformation processes and the analysis of geological structures at all scales.

ERTH 5704 [0.5 credit] (GEO 5174)
Tectonics
Dynamic and geological aspects of plate tectonics throughout Earth history.

ERTH 5707 [0.5 credit] (GEO 5177)
Engineering Seismology
Seismological topics with engineering applications. Characterization of seismicity and seismic sources (areas and faults). Seismic hazard analysis. Empirical and theoretical modeling of strong ground motion in time and frequency domain.

ERTH 5708 [0.5 credit] (GEO 5178)
Earthquake Signal Processing
Theoretical and practical aspects of earthquake signal processing, seismic instrumentation, instrument response and application of spectral analysis and response spectra.

ERTH 5901 [0.5 credit] (GEO 5193)
Field Studies
Field investigations of geological problems, unrelated to thesis research, under the guidance of directors other than the thesis supervisor. Minimum of fifteen days field work. A written proposal including research plan, deliverables, and evaluation must be submitted for departmental approval prior to registration. Written report required.
Includes: Experiential Learning Activity

ERTH 5903 [0.5 credit] (GEO 5193)
Field Studies
Field investigations of geological problems, unrelated to thesis research, under the guidance of directors other than the thesis supervisor. Minimum of fifteen days field work. A written proposal including research plan, deliverables, and evaluation must be submitted for departmental approval prior to registration. Written report required.
Includes: Experiential Learning Activity

ERTH 5906 [0.0 credit] (GEO 5193)
M.Sc. Geoscience Seminar
Participation in the Geoscience Seminar Series.

ERTH 5907 [0.0 credit] (GEO 5193)
Ph.D. Geoscience Seminar
Participation in the Geoscience Seminar Series.

ERTH 5909 [3.5 credits] (GEO 7999)
M.Sc. Thesis
A thesis proposal must be approved by the research advisory committee by the end of the first year of registration.
Includes: Experiential Learning Activity

ERTH 6908 [0.0 credit] (GEO 9998)
Ph.D. Comprehensive Examination
The Comprehensive Examination involves a thesis proposal and oral examination in three different areas of specialization. Students will receive a grade of Satisfactory, Unsatisfactory or Pass with Distinction. This exam is taken within the first twelve months of registration in the program.
ERTH 6909 [9.0 credits] (GEO 9999)
Ph.D. Thesis
A thesis proposal must be approved by the research advisory committee by the end of the first year of registration.
Includes: Experiential Learning Activity