Mechanical and Aerospace Engineering

This section presents the requirements for programs in:

- M.A.Sc. Aerospace Engineering
- M.A.Sc. Materials Engineering
- M.A.Sc. Mechanical Engineering
- M.A.Sc. Aerospace Engineering with Collaborative Specialization in Climate Change
- M.A.Sc. Materials Engineering with Collaborative Specialization in Climate Change
- M.A.Sc. Mechanical Engineering with Collaborative Specialization in Climate Change
- M. Eng. Aerospace
- M. Eng. Materials
- M. Eng. Mechanical
- Ph.D. Aerospace Engineering
- Ph.D. Mechanical Engineering

Program Requirements

Students are expected to complete the master's program within the maximum limits outlined in the Section 13.2 of the General Regulations section of this Calendar.

The requirements for course work are specified in terms of credits: one credit is one hour/week for one term (thirteen weeks).

M.A.Sc. Aerospace Engineering (5.0 credits)

Requirements:
1. 2.5 credits in courses offered by the OCIMAE.
2. Participation in the Mechanical and Aerospace Engineering seminar series
3. 2.5 credits in:

Total Credits 5.0

M.A.Sc. Materials Engineering (5.0 credits)

Requirements:
1. 1.0 credit in:
 - CLIM 5000 [1.0] Climate Collaboration
2. 0.0 credit in:
 - CLIM 5800 [0.0] Climate Seminar Series
3. 1.5 credits in courses offered by the OCIMAE.
4. Participation in the Mechanical and Aerospace Engineering seminar series
5. 2.5 credits in:

Total Credits 5.0

M.A.Sc. Mechanical Engineering with Collaborative Specialization in Climate Change (5.0 credits)

Requirements:
1. 1.0 credit in:
 - CLIM 5000 [1.0] Climate Collaboration
2. 0.0 credit in:
 - CLIM 5800 [0.0] Climate Seminar Series
3. 1.5 credits in courses offered by the OCIMAE.
4. Participation in the Mechanical and Aerospace Engineering seminar series
5. 2.5 credits in:

Total Credits 5.0

M. Eng. Aerospace (5.0 credits)

Requirements:
1. 1.5 credits from the Aerospace Restricted Course List. Up to 1.0 credit can be completed by taking courses in AERO at the 4000 level and MAAE at the 4000 level with the approval of the Associate Chair for Graduate Studies.
2. 3.5 credits from any graduate level course offered by the OCIMAE

Total Credits 5.0

Requirements by Project (Independent Study) (5.0 credits)

1. 1.5 credits in:
 - MECH 5908 [1.5] Independent Engineering Study
2. 1.5 credits from the Aerospace Restricted Course List. Up to 1.0 credit can be completed by taking courses in AERO at the 4000 level and MAAE at the 4000 level with the approval of the Associate Chair for Graduate Studies.
3. 2.0 credits from any graduate level course offered by the OCIMAE

Total Credits 5.0

M. Eng. Materials (5.0 credits)

Requirements:
1. 1.5 credits from the Materials Restricted Course List. Up to 1.0 credit can be completed by taking courses in materials oriented MECH at the 4000 level and MAAE at the 4000 level with the approval of the Associate Chair for Graduate Studies.
2. 3.5 credits from any graduate level course offered by the OCIMAE

Total Credits 3.5

Requirements by Project (Independent Study) (5.0 credits)
1. 1.5 credits in:
 MECH 5908 [1.5] Independent Engineering Study

2. 1.5 credits from the Materials Restricted Course List.
 Up to 1.0 credit can be completed by taking courses in materials oriented MECH at the 4000 level and MAAE at the 4000 level with the approval of the Associate Chair for Graduate Studies.

3. 2.0 credits from any graduate level course offered by the OCIMAE

Total Credits 5.0

M. Eng. Mechanical (5.0 credits)

Requirements:
1. 5.0 credits from the Unrestricted Course List. Up to 1.0 credit can be completed by taking courses in MECH at the 4000 level and MAAE at the 4000 level with the approval of the Associate Chair for Graduate Studies.

Total Credits 5.0

Requirements by Project (Independent Study) (5.0 credits)
1. 1.5 credits in:
 MECH 5908 [1.5] Independent Engineering Study

2. 3.5 credits from the Unrestricted Course List. Up to 1.0 credit can be completed by taking courses in MECH at the 4000 level and MAAE at the 4000 level with the approval of the Associate Chair for Graduate Studies.

Total Credits 5.0

Ph.D. Aerospace Engineering (1.5 credits)

Requirements (from the master's degree):
(from the master's degree)
1. 1.5 credits in courses
2. Participation in the Mechanical and Aerospace Engineering seminar series
3. Successful completion of the comprehensive examination according to section 9.4 and 9.5 of the General Regulations section of this Calendar
4. 0.0 credits in thesis.
 MECH 6909 [0.0] Ph.D. Thesis

Total Credits 1.5

Graduate Courses

In addition, graduate courses offered by departments in other disciplines may be taken for credit with approval by the department in which the student is registered.

Not all of the following courses are offered in a given year. Consult the Ottawa-Carleton Joint Institute for Mechanical and Aerospace Engineering (OCIMAE) website for course offerings.

The following codes identify the department offering the course:
- 'MECH' Department of Mechanical and Aerospace Engineering, Carleton University
- 'MAAJ' Department of Mechanical Engineering, University of Ottawa

CARLETON UNIVERSITY

Aerospace Restricted List

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 5100 (MCG 5310)</td>
<td>Performance and Economics of Aircraft</td>
</tr>
<tr>
<td>MECH 5101 (MCG 5311)</td>
<td>Dynamics and Aerodynamics of Flight</td>
</tr>
<tr>
<td>MECH 5105 (MCG 5315)</td>
<td>Orbital Mechanics and Space Control</td>
</tr>
<tr>
<td>MECH 5106 (MCG 5121)</td>
<td>Space Mission Analysis and Design</td>
</tr>
<tr>
<td>MECH 5301 (MCG 5331)</td>
<td>Aeroacoustics</td>
</tr>
</tbody>
</table>

Materials Restricted List

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 5604 (MCG 5364)</td>
<td>Computational Metallurgy</td>
</tr>
<tr>
<td>MECH 5609 (MCG 5123)</td>
<td>Microstructure and Properties of Materials</td>
</tr>
<tr>
<td>MECH 5700 (MCG 5345)</td>
<td>Surfaces and Coatings</td>
</tr>
<tr>
<td>MECH 5701 (MCG 5369)</td>
<td>Metallic Phases and Transformations</td>
</tr>
</tbody>
</table>

Unrestricted List

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 5009 (MCG 5309)</td>
<td>Environmental Fluid Mechanics Relating to Energy Utilization</td>
</tr>
<tr>
<td>MECH 5104 (MCG 5314)</td>
<td>Ground Transportation Systems and Vehicles</td>
</tr>
<tr>
<td>MECH 5201 (MCG 5321)</td>
<td>Methods of Energy Conversion</td>
</tr>
<tr>
<td>MECH 5203 (MCG 5322)</td>
<td>Nuclear Engineering</td>
</tr>
<tr>
<td>MECH 5205 (MCG 5324)</td>
<td>Building Performance Simulation</td>
</tr>
<tr>
<td>MECH 5300 (MCG 5330)</td>
<td>Engineering Acoustics</td>
</tr>
<tr>
<td>MECH 5500 (MCG 5350)</td>
<td>Advanced Vibration Analysis</td>
</tr>
<tr>
<td>MECH 5704 (MCG 5374)</td>
<td>Integrated Manufacturing Systems (CIMS)</td>
</tr>
<tr>
<td>MECH 5107 (MCG 5317)</td>
<td>Experimental Stress Analysis</td>
</tr>
<tr>
<td>MECH 5302 (MCG 5332)</td>
<td>Instrumentation Techniques</td>
</tr>
<tr>
<td>MECH 5407 (MCG 5347)</td>
<td>Conductive and Radiative Heat Transfer</td>
</tr>
<tr>
<td>MECH 5408 (MCG 5348)</td>
<td>Convective Heat and Mass Transfer</td>
</tr>
<tr>
<td>MECH 5601 (MCG 5361)</td>
<td>Creative Problem Solving and Design</td>
</tr>
<tr>
<td>MECH 5602 (MCG 5362)</td>
<td>Failure Prevention (Fracture Mechanics and Fatigue)</td>
</tr>
<tr>
<td>MECH 5603 (MCG 5381)</td>
<td>Lightweight Structures</td>
</tr>
<tr>
<td>MECH 5605 (MCG 5365)</td>
<td>Finite Element Analysis I</td>
</tr>
<tr>
<td>MECH 5606 (MCG 5366)</td>
<td>Finite Element Analysis II</td>
</tr>
<tr>
<td>MECH 5607 (MCG 5367)</td>
<td>The Boundary Element Method (BEM)</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>MECH 5000 (MCG 5300)</td>
<td>Fundamentals of Fluid Dynamics</td>
</tr>
<tr>
<td>MECH 5001 (MCG 5301)</td>
<td>Theory of Viscous Flows</td>
</tr>
<tr>
<td>MECH 5003 (MCG 5303)</td>
<td>Incompressible Non-Viscous Flow</td>
</tr>
<tr>
<td>MECH 5004 (MCG 5304)</td>
<td>Compressible Non-Viscous Flow</td>
</tr>
<tr>
<td>MECH 5008 (MCG 5308)</td>
<td>Experimental Methods in Fluid Mechanics</td>
</tr>
<tr>
<td>MECH 5202 (MCG 5122)</td>
<td>Smart Structures</td>
</tr>
<tr>
<td>MECH 5204 (MCG 5483)</td>
<td>Fundamentals of Combustion</td>
</tr>
<tr>
<td>MECH 5304 (MCG 5334)</td>
<td>Computational Fluid Dynamics of Compressible Flows</td>
</tr>
<tr>
<td>MECH 5400 (MCG 5344)</td>
<td>Gas Turbine Combustion</td>
</tr>
<tr>
<td>MECH 5401 (MCG 5341)</td>
<td>Turbomachinery</td>
</tr>
<tr>
<td>MECH 5402 (MCG 5342)</td>
<td>Gas Turbines</td>
</tr>
<tr>
<td>MECH 5403 (MCG 5343)</td>
<td>Advanced Thermodynamics</td>
</tr>
<tr>
<td>MECH 5501 (MCG 5125)</td>
<td>Advanced Dynamics</td>
</tr>
<tr>
<td>MECH 5502 (MCG 5352)</td>
<td>Optimal Control Systems</td>
</tr>
<tr>
<td>MECH 5503 (MCG 5353)</td>
<td>Robotics</td>
</tr>
<tr>
<td>MECH 5504 (MCG 5354)</td>
<td>Guidance, Navigation and Control</td>
</tr>
<tr>
<td>MECH 5505 (MCG 5355)</td>
<td>Stability Theory and Applications</td>
</tr>
<tr>
<td>MECH 5506 (MCG 5356)</td>
<td>Neuro and Fuzzy Control</td>
</tr>
<tr>
<td>MECH 5507 (MCG 5124)</td>
<td>Advanced Kinematics</td>
</tr>
<tr>
<td>MECH 5705 (MCG 5375)</td>
<td>CAD/CAM</td>
</tr>
</tbody>
</table>

With the approval of the Department, the following courses can be placed in one of the above categories:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAJ 5308 (MCG 5138)</td>
<td>Advanced Topics in Advanced Materials and Manufacturing Engineering</td>
</tr>
<tr>
<td>MECH 5800 (MCG 5480)</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MECH 5801 (MCG 5489)</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MECH 5802 (MCG 5483)</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MECH 5803 (MCG 5488)</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MECH 5804 (MCG 5384)</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MECH 5805 (MCG 5482)</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MECH 5806 (MCG 5486)</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MECH 5807 (MCG 5387)</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 5808 (MCG 5376)</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MECH 5809 (MCG 5382)</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
</tbody>
</table>

UNIVERSITY OF OTTAWA

Materials Restricted List

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAJ 5003 (MCG 5103)</td>
<td>Theory Perfectly Plastic Solid</td>
</tr>
<tr>
<td>MAAJ 5100 (MCG 5110)</td>
<td>Micromechanics of Solids</td>
</tr>
<tr>
<td>MAAJ 5107 (MCG 5117)</td>
<td>Intro to Composite Materials</td>
</tr>
<tr>
<td>MAAJ 5108 (MCG 5118)</td>
<td>Introduction to Plasticity</td>
</tr>
<tr>
<td>MAAJ 5206 (MCG 5126)</td>
<td>Deformation of Materials</td>
</tr>
<tr>
<td>MAAJ 5209 (MCG 5129)</td>
<td>Hot Working of Metals</td>
</tr>
<tr>
<td>MAAJ 5307 (MCG 5137)</td>
<td>Special Studies in Solid Mechanics and Materials</td>
</tr>
</tbody>
</table>

Unrestricted List

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAJ 5004 (MCG 5104)</td>
<td>Theory of Plates and Shells</td>
</tr>
<tr>
<td>MAAJ 5104 (MCG 5114)</td>
<td>Analy & Des: Pressure Vessels</td>
</tr>
<tr>
<td>MAAJ 5509 (MCG 5159)</td>
<td>Production Planning and Control</td>
</tr>
<tr>
<td>MAAJ 5608 (MCG 5168)</td>
<td>Industrial Organization</td>
</tr>
<tr>
<td>MAAJ 5609 (MCG 5169)</td>
<td>Topics in Reliability Engineer</td>
</tr>
<tr>
<td>MAAJ 5701 (MCG 5171)</td>
<td>Applied Reliability Theory</td>
</tr>
<tr>
<td>MAAJ 5703 (MCG 5173)</td>
<td>Systems Engineer and Integration</td>
</tr>
<tr>
<td>MAAJ 5707 (MCG 5177)</td>
<td>Robot Mechanics</td>
</tr>
<tr>
<td>MAAJ 5709 (MCG 5179)</td>
<td>Manufacturing System Analysis</td>
</tr>
<tr>
<td>MAAJ 5804 (MCG 5184)</td>
<td>Mechatronics</td>
</tr>
<tr>
<td>MAAJ 5001 (MCG 5101)</td>
<td>Theory of Elasticity</td>
</tr>
<tr>
<td>MAAJ 5002 (MCG 5102)</td>
<td>Advanced Stress Analysis</td>
</tr>
<tr>
<td>MAAJ 5006 (MCG 5106)</td>
<td>Advanced Topics in Elasticity</td>
</tr>
<tr>
<td>MAAJ 5008 (MCG 5108)</td>
<td>Finite Element Analysis</td>
</tr>
<tr>
<td>MAAJ 5009 (MCG 5109)</td>
<td>Topics:Finite Element Analysis</td>
</tr>
<tr>
<td>MAAJ 5109 (MCG 5119)</td>
<td>Fracture Mechanics</td>
</tr>
<tr>
<td>MAAJ 5301 (MCG 5131)</td>
<td>Heat Transfer by Conduction</td>
</tr>
<tr>
<td>MAAJ 5302 (MCG 5132)</td>
<td>Heat Transfer by Convection</td>
</tr>
<tr>
<td>MAAJ 5303 (MCG 5133)</td>
<td>Heat Transfer by Radiation</td>
</tr>
<tr>
<td>MAAJ 5304 (MCG 5134)</td>
<td>Heat Transfer w/Phase Change</td>
</tr>
</tbody>
</table>
Admission

The normal requirement for admission to the master's program is a bachelor's degree with at least high honours standing in mechanical or aerospace engineering or a related discipline.

Students who are in the master's program may be admitted to the Ph.D. program if they show outstanding academic performance and demonstrate significant promise for advanced research, upon recommendation of the department. In addition, graduate courses offered by departments in other disciplines may be taken for credit with approval by the department in which the student is registered.

Mechanical Engineering (MECH) Courses

MECH 5000 [0.5 credit] (MCG 5300) Fundamentals of Fluid Dynamics
Differential equations of motion. Viscous and inviscid regions. Potential flow: superposition; thin airfoils; finite wings; compressibility corrections. Viscous flow: thin shear layer approximation; laminar layers; transition; turbulence modeling. Convective heat transfer: free versus forced convection; energy and energy integral equations; turbulent diffusion.

Also listed as MAAJ 5050.
Also offered at the undergraduate level, with different requirements, as AERO 4302, for which additional credit is precluded.

MECH 5001 [0.5 credit] (MCG 5301) Theory of Viscous Flows
Navier-Stokes and boundary layer equations; mean flow equations for turbulent kinetic energy; integral formulations. Stability, transition, turbulence, Reynolds stresses; separation. Calculation methods, closure schemes. Compressibility, heat transfer, and three-dimensional effects.

Includes: Experiential Learning Activity

MECH 5003 [0.5 credit] (MCG 5303) Incompressible Non-Viscous Flow
The fundamental equations and theorems for non-viscous fluid flow; solution of two-dimensional and axisymmetric potential flows; low-speed airfoil and cascade theory; wing lifting-line theory; panel methods.

MECH 5004 [0.5 credit] (MCG 5304) Compressible Non-Viscous Flow
Steady isentropic, frictional, and diabatic flow; shock waves; irrotational compressible flow, small perturbation theory and similarity rules; second-order theory and unsteady, one-dimensional flow.

MECH 5008 [0.5 credit] (MCG 5308) Experimental Methods in Fluid Mechanics
Fundamentals of techniques of simulation of fluid dynamic phenomena. Theoretical basis, principles of design, performance and instrumentation of ground test facilities. Applications to aerodynamic testing. Includes: Experiential Learning Activity
MECH 5009 [0.5 credit] (MCG 5309)
Environmental Fluid Mechanics Relating to Energy Utilization
Characteristics of energy sources and emissions into the environment. The atmosphere; stratification and stability, equations of motion, simple winds, mean flow, turbulence structure and dispersion near the ground. Flow and dispersion in groundwater, rivers, lakes and oceans. Physical and analytical modeling of environmental flows. Includes: Experiential Learning Activity
Also listed as MAAJ 5059.

MECH 5100 [0.5 credit] (MCG 5310)
Performance and Economics of Aircraft
Aircraft performance analysis with emphasis on factors affecting take-off, landing and economic performance; high lift schemes; operating economics.

MECH 5101 [0.5 credit] (MCG 5311)
Dynamics and Aerodynamics of Flight
Static stability theory. Euler's equations for rigid body motion; the linearized equations of motion; stability derivatives and their estimation. Longitudinal and lateral dynamic response of an aircraft to control and disturbance. Includes: Experiential Learning Activity
Also listed as MAAJ 5151.
Also offered at the undergraduate level, with different requirements, as AERO 4308, for which additional credit is precluded.

MECH 5103 [0.5 credit] (MCG 5328)
3D Machine Vision: From Robots to the Space Station
Through lectures and project work, this course introduces fundamental 3D machine vision methods (triangulation and time-of-flight), presents cutting-edge neural network approaches, and explores major engineering applications (e.g. robotics, autonomous vehicles, space navigation) where perception of the 3D environment is essential.

MECH 5104 [0.5 credit] (MCG 5314)
Ground Transportation Systems and Vehicles
Performance characteristics, handling and directional stability, ride comfort and safety of various types of ground vehicle systems including road vehicles, terrain-vehicle systems, guided transport systems, and advanced ground transport technology.

MECH 5105 [0.5 credit] (MCG 5315)
Orbital Mechanics and Space Control
Orbital dynamics and perturbations due to the Earth’s figure, the sun, and the moon with emphasis on mission planning and analysis. Rigid body dynamics applied to transfer orbit and on-orbit momentum management and control of spacecraft. Effects of flexible structures on a spacecraft control system. Includes: Experiential Learning Activity
Also listed as MAAJ 5155.

MECH 5106 [0.5 credit] (MCG 5121)
Space Mission Analysis and Design
Review of solar system and space exploration. Space mission design and geometry. Analysis of orbit design, transfers, interplanetary trajectories. Effect of environment on spacecraft design. Space propulsion and launch vehicle design. Launch sequence, windows, cost. Reusable launch systems.
Also offered at the undergraduate level, with different requirements, as AERO 4802., for which additional credit is precluded.

MECH 5107 [0.5 credit] (MCG 5317)
Experimental Stress Analysis

MECH 5201 [0.5 credit] (MCG 5321)
Methods of Energy Conversion
Technical, economic and environmental aspects of present and proposed large-scale systems of energy conversion.

MECH 5202 [0.5 credit] (MCG 5122)
Smart Structures
Structural dynamics principles: modal analysis and wave propagation. Linear time invariant systems: feedback, feedforward, SISO, MIMO, digital and adaptive filters. ‘Smart’ Structures: multifunctional materials, collocation principles, geometric filtering, and control authority. Applications in aero-acoustics and aerelasticity.

MECH 5203 [0.5 credit] (MCG 5322)
Nuclear Engineering
Reactor design and safety requirement overview; reactor physics, chemistry and engineering, CANDU reactor design and operation; CANDU reactor fuel channels, thermalhydraulics and fuel; reactor safety design and analysis; IAEA and Canadian safety analysis requirements; reactor accidents; nuclear energy policy.
MECH 5204 [0.5 credit] (MCG 5483)
Fundamentals of Combustion
Emphasis on gas phase reacting flows. Background of
combustion thermodynamics, diffusion mass transfer,
and chemical kinetics. Detonations and deflagrations.
Chemical and dynamic structure of flames. Gaseous flame
propagation under laminar and turbulent conditions. Flame
stabilization and extinction. Introduction to burning rate
theory.
Also listed as MAAJ 5254.

MECH 5205 [0.5 credit] (MCG 5324)
Building Performance Simulation
During this course students will develop an understanding
of the methodologies and theory employed historically and
contemporarily in the Building Performance Simulation
(BPS) field, develop capabilities for extending the
functionality of BPS tools, and establish skills in applying
BPS tools in research, analysis, and design.
Includes: Experiential Learning Activity
Also listed as MAAJ 5255.

MECH 5206 [0.5 credit] (MCG 5325)
Wind Engineering
Theoretical and practical areas pertinent to the operation
of wind turbines. World energy needs, wind farms versus
traditional power plants, global wind characteristics,
efficient turbine design, electrical components, modes
of turbine operation and control, mechanical design,
economic and environmental concerns.

MECH 5300 [0.5 credit] (MCG 5330)
Engineering Acoustics
Review of acoustic waves in compressible fluids; acoustic
pressure, intensity and impedance; physical interpretation
and measurement; transmission through media; layers,
in-homogeneous media, solids; acoustic systems; rooms,
ducts, resonators, mufflers, properties of transducers;
microphones, loudspeakers, computational acoustics.

MECH 5301 [0.5 credit] (MCG 5331)
Aeroacoustics
The convected wave equation; theory of subsonic and
supersonic jet noise; propeller and helicopter noise; fan
and compressor noise; boundary layer noise, interior
noise; propagation in the atmosphere; sonic boom; impact
on environment.
Includes: Experiential Learning Activity

MECH 5302 [0.5 credit] (MCG 5332)
Instrumentation Techniques
An introduction for the non-specialists to the concepts
of digital and analog electronics with emphasis on data
acquisition, processing and analysis. Topics covered
include operational amplifiers, signal processing, digital
logic systems, computer interfacing, noise in electronic
systems. Hands-on sessions illustrate theory and practice.
Also listed as MAAJ 5352.

MECH 5304 [0.5 credit] (MCG 5334)
Computational Fluid Dynamics of Compressible Flows
Solution techniques for parabolic, elliptic and hyperbolic
equations developed for problems of interest to fluid
dynamics with appropriate stability considerations. A
staged approach to solution of full Euler and Navier-
Stokes equations is used. Grid generation techniques
appropriate for compressible flows are introduced.
Also listed as MAAJ 5354.

MECH 5400 [0.5 credit] (MCG 5344)
Gas Turbine Combustion
Combustion fundamentals and gas turbine combustor
design. Combustion fundamentals include fuel
evaporation, chemistry of combustion, chemical kinetics
and emissions formation and introduction to computational
combustion modelling. Combustor design addresses the
interrelationship between operational requirements and
combustion fundamentals.
Precludes additional credit for MECH 5800 (MCG 5480)
when MECH 5800 was offered with this topic.

MECH 5401 [0.5 credit] (MCG 5341)
Turbomachinery
Types of machines. Similarity: performance parameters;
characteristics; cavitation. Velocity triangles. Euler
equation: impulse and reaction. Radial pumps and
compressors: analysis, design and operation. Axial pumps
and compressors: cascade and blade-element methods;
staging; off-design performance; stall and surge. Axial
turbines. Current design practice.
Includes: Experiential Learning Activity
Also listed as MAAJ 5451.

MECH 5402 [0.5 credit] (MCG 5342)
Gas Turbines
Interrelationship among thermodynamic, aerodynamic,
and mechanical design. Ideal and real cycle calculations. Cycle
optimization; turbo-shaft, turbojet, turbofan. Component performance. Off-design performance;
matching of compressor, turbine, nozzle. Twin-spool
matching.

MECH 5403 [0.5 credit] (MCG 5343)
Advanced Thermodynamics
The course covers three major topics: review of
fundamentals from a consistent viewpoint, properties
and equations of state, and applications and special
topics. The third topic includes an introduction to statistical
thermodynamics.

MECH 5407 [0.5 credit] (MCG 5347)
Conductive and Radiative Heat Transfer
Analytical, numerical and analog solutions to steady-state
and transient conduction heat transfer in multi-dimensional
systems. Radiative heat exchange between black, grey,
non-grey diffusive and specular surfaces, including effects
of athermanous media.
Also listed as MAAJ 5457.
MECH 5408 [0.5 credit] (MCG 5348)
Convective Heat and Mass Transfer
Analogies between heat, mass and momentum transfer. Forced and free convection relations for laminar and turbulent flows analytically developed where possible and otherwise deduced from experimental results, for simple shapes and in heat exchangers. Mass transfer theory and applications.

MECH 5500 [0.5 credit] (MCG 5350)
Advanced Vibration Analysis
General theory of continuous and discrete multi-degree-of-freedom vibrating systems. Emphasis on numerical techniques of solving complex vibrating systems, with selected applications from aerospace, civil, and mechanical engineering.
Includes: Experiential Learning Activity
Also listed as MAAJ 5550.

MECH 5501 [0.5 credit] (MCG 5125)
Advanced Dynamics
Developing and applying the governing equations of motion for discrete and continuous mechanical systems. Includes Newton-Euler and Lagrangian formulations; classical and finite element approaches for continuous systems; and linear stability, frequency response, and propagation solution methods.
Includes: Experiential Learning Activity

MECH 5502 [0.5 credit] (MCG 5352)
Optimal Control Systems

MECH 5503 [0.5 credit] (MCG 5353)
Robotics
The history of and introduction to robotics methodology. Robots and manipulators; homogeneous transformation, kinematic equations, solving kinematic equations, differential relationships, motion trajectories, dynamics. Control; feedback control, compliance, servomotors, actuators, external and internal sensors, grippers and vision systems. Microprocessors and their application to robot control. Programming.

MECH 5504 [0.5 credit] (MCG 5354)
Guidance, Navigation and Control

MECH 5505 [0.5 credit] (MCG 5355)
Stability Theory and Applications
Fundamental concepts and characteristics of modern stability definitions. Sensitivity and variational equations; linear variational equations; phase space analysis; Lyapunov's direct method. Autonomous and nonautonomous systems; stability in first approximation; the effect of force type on stability; frequency method. Also listed as MAAJ 5555.

MECH 5506 [0.5 credit] (MCG 5356)
Neuro and Fuzzy Control
Precludes additional credit for EACJ 5709 (ELG 5196).

MECH 5507 [0.5 credit] (MCG 5124)
Advanced Kinematics
Algebraic-geometry applications: kinematic calibration of serial and in-parallel robots; kinematic synthesis of planar, spherical, spatial mechanisms. Various DH-parametrisations, Jacobian formulations. Topics in: projective geometry; Cayley-Klein geometries; Plücker line coordinates; Gröbner basis; Grassmannians; kinematic mapping; Burmester theory. Emphasis on practical applications.
Includes: Experiential Learning Activity
Also listed as MAAJ 5557.

MECH 5508 [0.5 credit] (MCG 5326)
System Modelling, Dynamics and Control
The course provides an understanding of system modelling and the connection between energy domains. Within the temporal and/or frequency domains, system identification techniques and control aspects are explored for discrete and continuous systems along with lumped and distributed parameter models.

MECH 5509 [0.5 credit] (MCG 5327)
Nonlinear Systems Analysis & Controls
MECH 5601 [0.5 credit] (MCG 5361)
Creative Problem Solving and Design
Problem-solving processes and how they can be applied in engineering design. Emphasis on learning methodologies rather than accumulating information. Techniques can be successfully applied in any engineering specialty.
Also listed as IDES 5301 (no longer offered), MAAJ 5657.

MECH 5602 [0.5 credit] (MCG 5362)
Failure Prevention (Fracture Mechanics and Fatigue)
Design of engineering structures to ensure against failure due to fatigue or brittle fracture. Nature of fatigue and brittle fracture; selection of suitable material, geometry, and inspection procedures for the load and environmental conditions.

MECH 5603 [0.5 credit] (MCG 5381)
Lightweight Structures

MECH 5604 [0.5 credit] (MCG 5364)
Computational Metallurgy

MECH 5605 [0.5 credit] (MCG 5365)
Finite Element Analysis I
An introduction to the finite element methodology, with emphasis on applications to heat transfer, fluid flow and stress analysis. The basic concepts of Galerkin’s method, interpolation, numerical integration, and isoparametric elements are taught using simple examples.
Also listed as MAAJ 5655.

MECH 5606 [0.5 credit] (MCG 5366)
Finite Element Analysis II
Time marching heat flow problems with linear and nonlinear analysis. Static plasticity. Time-dependent deformation problems; viscoplasticity, viscoelasticity, and dynamic analysis. Isoparametric elements and numerical integration are used throughout.

MECH 5607 [0.5 credit] (MCG 5367)
The Boundary Element Method (BEM)
Integral equations. The BIE for potential theory and for elastostatics in two-dimensions. Boundary elements and numerical integration schemes. Practical applications. Includes: Experiential Learning Activity
Also listed as MAAJ 5656.

MECH 5609 [0.5 credit] (AMM 5123)
Microstructure and Properties of Materials
Essential microstructural features of metals and alloys: crystal structure, dislocations, grain boundaries. The importance of these features in controlling mechanical properties is emphasized. Analytical techniques observing microstructure in metals and other materials: TEM, SEM, electron diffraction, spectrometry.
Also listed as MAAJ 5659.

MECH 5700 [0.5 credit] (MCG 5345)
Surfaces and Coatings
Surface characteristics of solid materials and surface degradation/failure mechanisms including wear, fretting, oxidation, corrosion, and erosion are introduced. Coating methods including PVD, CVD, laser, thermal spray and electrochemical deposition are discussed in the context of failure prevention measures.
Also listed as MAAJ 5750.

MECH 5701 [0.5 credit] (MCG 5369)
Metallic Phases and Transformations
Thermodynamics of crystals, phase diagrams, principles of alloy phases, thermal analysis. Transformation rate and mechanisms. Short and long range diffusional transformations, diffusionless transformations. Phase transformations in engineering systems.
Precludes additional credit for MECH 5608 if taken during 2001-2002 or during 2005-2006.
Prerequisite(s): MECH 2700 or the equivalent.

MECH 5704 [0.5 credit] (MCG 5374)
Integrated Manufacturing Systems (CIMS)
Topics essential to CIMS including computer graphics, geometric modeling, numerically controlled machining, and flexible manufacturing. The fundamental data structures and procedures for computerization of engineering design, analysis and production.
Also offered at the undergraduate level, with different requirements, as MECH 4704, for which additional credit is precluded.

MECH 5705 [0.5 credit] (MCG 5375)
CAD/CAM
Computer aided design and manufacturing methodology through hands-on experience and state-of-the-art software. Topics include mathematical representation, solid modeling, drafting, mechanical assembly, mechanism design and CNC machining. CAD data exchange standards, rapid prototyping, concurrent engineering and design for X are also discussed.

MECH 5800 [0.5 credit] (MCG 5480)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.
Also listed as MAAJ 5850.
MECH 5801 [0.5 credit] (MCG 5489)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.

MECH 5802 [0.5 credit] (MCG 5483)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.
Also listed as MAAJ 5852.

MECH 5803 [0.5 credit] (MCG 5488)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.
Also listed as MAAJ 5853.

MECH 5804 [0.5 credit] (MCG 5384)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.
Also listed as MAAJ 5854.

MECH 5805 [0.5 credit] (MCG 5482)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.
Also listed as MAAJ 5855.

MECH 5806 [0.5 credit] (MCG 5486)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.

MECH 5807 [0.5 credit] (MCG 5387)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.
Also listed as MAAJ 5857.

MECH 5808 [0.5 credit] (MCG 5376)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.
Also listed as MAAJ 5858.

MECH 5809 [0.5 credit] (MCG 5382)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.

MECH 5906 [0.5 credit]
Directed Studies

MECH 5908 [1.5 credit] (MCG 5396)
Independent Engineering Study
Students pursuing a master's degree by course work carry out an independent study, analysis, and solution of an engineering problem or design project. The results are given in the form of a written report and presented at a departmental seminar. Carried out under the general.
Includes: Experiential Learning Activity

MECH 5909 [2.5 credits]
M.A.Sc. Thesis
Includes: Experiential Learning Activity

MECH 6909 [0.0 credit]
Ph.D. Thesis
Includes: Experiential Learning Activity