Mechanical and Aerospace Engineering

This section presents the requirements for programs in:

- M.A.Sc. Aerospace Engineering
- M.A.Sc. Materials Engineering
- M.A.Sc. Mechanical Engineering
- M.A.Sc. Aerospace Engineering with Collaborative Specialization in Climate Change
- M.A.Sc. Materials Engineering with Collaborative Specialization in Climate Change
- M.A.Sc. Mechanical Engineering with Collaborative Specialization in Climate Change
- M. Eng. Aerospace
- M. Eng. Materials
- M. Eng. Mechanical
- Ph.D. Aerospace Engineering
- Ph.D. Mechanical Engineering

Program Requirements

Students are expected to complete the master's program within the maximum limits outlined in the Section 13.2 of the General Regulations section of this Calendar.

M.A.Sc. Aerospace Engineering (5.0 credits)

Requirements:
1. 2.5 credits in courses offered by the OCIMAE.
2. Participation in the Mechanical and Aerospace Engineering seminar series
3. 2.5 credits in:

Total Credits 5.0

M.A.Sc. Aerospace Engineering with Collaborative Specialization in Climate Change (5.0 credits)

Requirements:
1. 1.0 credit in:
 - CLIM 5000 [1.0] Climate Collaboration
2. 0.0 credit in:
 - CLIM 5800 [0.0] Climate Seminar Series
3. 1.5 credits in courses offered by the OCIMAE.
4. Participation in the Mechanical and Aerospace Engineering seminar series
5. 2.5 credits in:

Total Credits 5.0

M.A.Sc. Materials Engineering (5.0 credits)

Requirements:
1. 1.0 credit in:
 - CLIM 5000 [1.0] Climate Collaboration
2. 0.0 credit in:
 - CLIM 5800 [0.0] Climate Seminar Series
3. 1.5 credits in courses offered by the OCIMAE.
4. Participation in the Mechanical and Aerospace Engineering seminar series
5. 2.5 credits in:

Total Credits 5.0

M.A.Sc. Mechanical Engineering (5.0 credits)

Requirements:
1. 1.0 credit in:
 - CLIM 5000 [1.0] Climate Collaboration
2. 0.0 credit in:
 - CLIM 5800 [0.0] Climate Seminar Series
3. 1.5 credits in courses offered by the OCIMAE.
4. Participation in the Mechanical and Aerospace Engineering seminar series
5. 2.5 credits in:

Total Credits 5.0

M. Eng. Aerospace (5.0 credits)

Requirements:
1. 1.5 credits from the Aerospace Restricted Course List.
 Up to 1.0 credit can be completed by taking courses in AERO at the 4000 level with the approval of the Associate Chair for Graduate Studies.
2. 3.5 credits from any graduate level course offered by the OCIMAE

Total Credits 5.0

Requirements by Project (Independent Study) (5.0 credits)

1. 1.5 credits in:
 - MECH 5908 [1.5] Independent Engineering Study
2. 1.5 credits from the Aerospace Restricted Course List.
 Up to 1.0 credit can be completed by taking courses in AERO at the 4000 level and MAAE at the 4000 level with the approval of the Associate Chair for Graduate Studies.
3. 2.0 credits from any graduate level course offered by the OCIMAE

Total Credits 5.0

M. Eng. Materials (5.0 credits)

Requirements:
1. 1.5 credits from the Materials Restricted Course List.
 Up to 1.0 credit can be completed by taking courses in materials oriented MECH at the 4000 level and MAAE at the 4000 level with the approval of the Associate Chair for Graduate Studies.
2. 3.5 credits from any graduate level course offered by the OCIMAE

Total Credits 5.0

Requirements by Project (Independent Study) (5.0 credits)
1. 1.5 credits in:
 MECH 5908 [1.5] Independent Engineering Study

2. 1.5 credits from the Materials Restricted Course List.
 Up to 1.0 credit can be completed by taking courses in materials oriented MECH at the 4000 level and MAAE at the 4000 level with the approval of the Associate Chair for Graduate Studies.

3. 2.0 credits from any graduate level course offered by the OCIMAE

Total Credits 5.0

M. Eng. Mechanical (5.0 credits)
Requirements:
1. 5.0 credits from the Unrestricted Course List. Up to 1.0 credit can be completed by taking courses in MECH at the 4000 level and MAAE at the 4000 with the approval of the Associate Chair for Graduate Studies.

Total Credits 5.0

Requirements by Project (Independent Study) (5.0 credits)
1. 1.5 credits in:
 MECH 5908 [1.5] Independent Engineering Study

2. 3.5 credits from the Unrestricted Course List. Up to 1.0 credit can be completed by taking courses in MECH at the 4000 level and MAAE at the 4000 level with the approval of the Associate Chair for Graduate Studies.

Total Credits 5.0

Ph.D. Aerospace Engineering (1.5 credits)
Ph.D. Mechanical Engineering (1.5 credits)
Requirements (from the master's degree):
1. 1.5 credits in courses
 MECH 5000 [MCG 5300] Fundamentals of Fluid Dynamics
 MECH 5001 (MCG 5301) Theory of Viscous Flows
 MECH 5003 (MCG 5303) Incompressible Non-Viscous Flow
 MECH 5004 (MCG 5304) Compressible Non-Viscous Flow

2. Participation in the Mechanical and Aerospace Engineering seminar series

3. Successful completion of the comprehensive examination according to section 9.4 and 9.5 of the General Regulations section of this Calendar

4. 0.0 credits in thesis.
 MECH 6909 [0.0] Ph.D. Thesis

Total Credits 1.5

Graduate Courses
In addition, graduate courses offered by departments in other disciplines may be taken for credit with approval by the department in which the student is registered.

Not all of the following courses are offered in a given year.

The following codes identify the department offering the course:
• 'MECH' Department of Mechanical and Aerospace Engineering, Carleton University
• 'MAAE' Department of Mechanical Engineering, University of Ottawa

CARLETON UNIVERSITY

Aerospace Restricted List
MECH 5005 Uninhabited Aircraft Systems Design
MECH 5101 (MCG 5311) Dynamics and Aerodynamics of Flight
MECH 5103 (MCG 5328) 3D Machine Vision: From Robots to the Space Station
MECH 5105 (MCG 5315) Orbital Mechanics and Space Control
MECH 5106 (MCG 5121) Space Mission Analysis and Design
MECH 5301 (MCG 5331) Aeroacoustics

Materials Restricted List
MECH 5604 (AMM 5364) Computational Metallurgy
MECH 5609 (AMM 5123) Microstructure and Properties of Materials
MECH 5700 (AMM 5345) Surfaces and Coatings
MECH 5701 (AMM 5369) Metallic Phases and Transformations

Unrestricted List
MECH 5000 (MCG 5300) Fundamentals of Fluid Dynamics
MECH 5001 (MCG 5301) Theory of Viscous Flows
MECH 5003 (MCG 5303) Incompressible Non-Viscous Flow
MECH 5004 (MCG 5304) Compressible Non-Viscous Flow
MECH 5006 Solar Energy
MECH 5008 (MCG 5308) Experimental Methods in Fluid Mechanics
MECH 5009 (MCG 5309) Environmental Fluid Mechanics Relating to Energy Utilization
MECH 5107 (AMM 5317) Experimental Stress Analysis
MECH 5201 (MCG 5321) Methods of Energy Conversion
MECH 5202 (MCG 5122) Smart Structures
MECH 5203 (MCG 5322) Nuclear Engineering
MECH 5204 (MCG 5483) Fundamentals of Combustion
MECH 5205 (MCG 5324) Building Performance Simulation
MECH 5206 (MCG 5325) Wind Engineering
MECH 5300 (MCG 5330) Engineering Acoustics
MECH 5302 (MCG 5332) Instrumentation Techniques
MECH 5304 (MCG 5334) Computational Fluid Dynamics of Compressible Flows
MECH 5400 (MCG 5344) Gas Turbine Combustion
MECH 5401 (MCG 5341) Turbomachinery
MECH 5402 (MCG 5342) Gas Turbines
MECH 5403 (MCG 5343) Advanced Thermodynamics
MECH 5407 (MCG 5347) Conductive and Radiative Heat Transfer
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 5408 (MCG 5348)</td>
<td>Convective Heat and Mass Transfer</td>
</tr>
<tr>
<td>MECH 5500 (MCG 5350)</td>
<td>Advanced Vibration Analysis</td>
</tr>
<tr>
<td>MECH 5501 (MCG 5125)</td>
<td>Advanced Dynamics</td>
</tr>
<tr>
<td>MECH 5502 (MCG 5352)</td>
<td>Optimal Control Systems</td>
</tr>
<tr>
<td>MECH 5503 (MCG 5353)</td>
<td>Robotics</td>
</tr>
<tr>
<td>MECH 5504 (MCG 5354)</td>
<td>Guidance, Navigation and Control</td>
</tr>
<tr>
<td>MECH 5505 (MCG 5355)</td>
<td>Stability Theory and Applications</td>
</tr>
<tr>
<td>MECH 5506 (MCG 5356)</td>
<td>Neuro and Fuzzy Control</td>
</tr>
<tr>
<td>MECH 5507 (MCG 5124)</td>
<td>Advanced Kinematics</td>
</tr>
<tr>
<td>MECH 5508 (MCG 5326)</td>
<td>System Modelling, Dynamics and Control</td>
</tr>
<tr>
<td>MECH 5509 (MCG 5327)</td>
<td>Nonlinear Systems Analysis & Controls</td>
</tr>
<tr>
<td>MECH 5601 (MCG 5361)</td>
<td>Creative Problem Solving and Design</td>
</tr>
<tr>
<td>MECH 5602 (AMM 5362)</td>
<td>Failure Prevention (Fracture Mechanics and Fatigue)</td>
</tr>
<tr>
<td>MECH 5603 (AMM 5361)</td>
<td>Lightweight Structures</td>
</tr>
<tr>
<td>MECH 5605 (MCG 5365)</td>
<td>Finite Element Analysis I</td>
</tr>
<tr>
<td>MECH 5606 (MCG 5366)</td>
<td>Finite Element Analysis II</td>
</tr>
<tr>
<td>MECH 5607 (MCG 5367)</td>
<td>The Boundary Element Method (BEM)</td>
</tr>
<tr>
<td>MECH 5704 (AMM 5374)</td>
<td>Integrated Manufacturing Systems (CIMS)</td>
</tr>
<tr>
<td>MECH 5705 (MCG 5375)</td>
<td>CAD/CAM</td>
</tr>
</tbody>
</table>

With the approval of the Department, the following courses can be placed in one of the above categories:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MECH 5800 (MCG 5480)</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MECH 5801 (MCG 5489)</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MECH 5802 (MCG 5483)</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MECH 5803 (MCG 5488)</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MECH 5804 (MCG 5384)</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MECH 5805 (MCG 5482)</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MECH 5806 (MCG 5486)</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MECH 5807 (MCG 5487)</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MECH 5808 (MCG 5376)</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MECH 5809 (MCG 5382)</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
</tbody>
</table>

UNIVERSITY OF OTTAWA

Aerospace Restricted List

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAJ 5010 (MCG 5310)</td>
<td>Performance and Economics of V/ Stol Aircraft</td>
</tr>
<tr>
<td>MAAJ 5031 (MCG 5331)</td>
<td>Aero-Acoustics</td>
</tr>
<tr>
<td>MAAJ 5053 (AMM 5124)</td>
<td>Fatigue and Damage Tolerance in Aircraft</td>
</tr>
<tr>
<td>MAAJ 5157 (MCG 5121)</td>
<td>Space Mission Analysis and Design</td>
</tr>
</tbody>
</table>

Materials Restricted List

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAJ 5003 (MCG 5103)</td>
<td>Theory Perfectly Plastic Solid</td>
</tr>
<tr>
<td>MAAJ 5012 (AMM 5364)</td>
<td>Computational Metallurgy</td>
</tr>
<tr>
<td>MAAJ 5052 (AMM 5122)</td>
<td>Failure Analysis of High-Temperature Protective Coatings for Aerospace Applications</td>
</tr>
<tr>
<td>MAAJ 5100 (MCG 5110)</td>
<td>Micromechanics of Solids</td>
</tr>
<tr>
<td>MAAJ 5107 (AMM 5117)</td>
<td>Intro to Composite Materials</td>
</tr>
<tr>
<td>MAAJ 5108 (AMM 5118)</td>
<td>Introduction to Plasticity</td>
</tr>
<tr>
<td>MAAJ 5206 (AMM 5126)</td>
<td>Deformation of Materials</td>
</tr>
<tr>
<td>MAAJ 5209 (AMM 5129)</td>
<td>Hot Working of Metals</td>
</tr>
<tr>
<td>MAAJ 5307 (AMM 5137)</td>
<td>Special Studies in Solid Mechanics and Materials</td>
</tr>
<tr>
<td>MAAJ 5751 (AMM 5369)</td>
<td>Metallic Phases and Transformations</td>
</tr>
</tbody>
</table>

Unrestricted List

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAJ 5001 (AMM 5101)</td>
<td>Theory of Elasticity</td>
</tr>
<tr>
<td>MAAJ 5002 (MCG 5102)</td>
<td>Advanced Stress Analysis</td>
</tr>
<tr>
<td>MAAJ 5004 (MCG 5104)</td>
<td>Theory of Plates and Shells</td>
</tr>
<tr>
<td>MAAJ 5005 (MCG 5105)</td>
<td>Continuum Mechanics</td>
</tr>
<tr>
<td>MAAJ 5006 (AMM 5106)</td>
<td>Advanced Topics in Elasticity</td>
</tr>
<tr>
<td>MAAJ 5007 (MCG 5107)</td>
<td>Adv. Dynamics w/Applications</td>
</tr>
<tr>
<td>MAAJ 5008 (MCG 5108)</td>
<td>Finite Element Analysis</td>
</tr>
<tr>
<td>MAAJ 5009 (MCG 5109)</td>
<td>Advanced Topics in Finite Element Analysis</td>
</tr>
<tr>
<td>MAAJ 5013 (MCG 5125)</td>
<td>Advanced Dynamics</td>
</tr>
<tr>
<td>MAAJ 5014 (MCG 5314)</td>
<td>Ground Transportation Systems and Vehicles</td>
</tr>
<tr>
<td>MAAJ 5021 (MCG 5321)</td>
<td>Methods of Energy Conversion</td>
</tr>
<tr>
<td>MAAJ 5022 (MCG 5322)</td>
<td>Nuclear Engineering</td>
</tr>
<tr>
<td>MAAJ 5025 (MCG 5325)</td>
<td>Wind Engineering</td>
</tr>
<tr>
<td>MAAJ 5026 (MCG 5326)</td>
<td>System Modelling, Dynamics and Control</td>
</tr>
<tr>
<td>MAAJ 5027 (MCG 5327)</td>
<td>Nonlinear System Analysis and Controls</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>MAAJ 5028</td>
<td>3D Machine Vision: From Robots to the Space Station</td>
</tr>
<tr>
<td>MAAJ 5030</td>
<td>Engineering Acoustics</td>
</tr>
<tr>
<td>MAAJ 5042</td>
<td>Gas Turbines</td>
</tr>
<tr>
<td>MAAJ 5048</td>
<td>Convective Heat and Mass Transfers</td>
</tr>
<tr>
<td>MAAJ 5050</td>
<td>Fundamentals of Fluid Dynamics</td>
</tr>
<tr>
<td>MAAJ 5051</td>
<td>Deformation and Fracture of Engineering Materials</td>
</tr>
<tr>
<td>MAAJ 5054</td>
<td>Finite-Volume Methods for Compressible Flows</td>
</tr>
<tr>
<td>MAAJ 5055</td>
<td>High-Performance Parallel Scientific Computing</td>
</tr>
<tr>
<td>MAAJ 5056</td>
<td>Materials Characterization Techniques</td>
</tr>
<tr>
<td>MAAJ 5057</td>
<td>Materials Selection in Engineering Design</td>
</tr>
<tr>
<td>MAAJ 5058</td>
<td>Non-Equilibrium Gas Dynamics</td>
</tr>
<tr>
<td>MAAJ 5059</td>
<td>Environmental Fluid Mechanics</td>
</tr>
<tr>
<td>MAAJ 5101</td>
<td>Gas Dynamics</td>
</tr>
<tr>
<td>MAAJ 5102</td>
<td>Experimental Stress Analysis</td>
</tr>
<tr>
<td>MAAJ 5103</td>
<td>Integrated Manufacturing - CIMS</td>
</tr>
<tr>
<td>MAAJ 5105</td>
<td>Non-Linear Optimization</td>
</tr>
<tr>
<td>MAAJ 5109</td>
<td>Fracture Mechanics</td>
</tr>
<tr>
<td>MAAJ 5122</td>
<td>Optimal Control Systems</td>
</tr>
<tr>
<td>MAAJ 5123</td>
<td>Robotics</td>
</tr>
<tr>
<td>MAAJ 5151</td>
<td>Dynamics and Aerodynamics of Flight</td>
</tr>
<tr>
<td>MAAJ 5152</td>
<td>Theory of Viscous Flows</td>
</tr>
<tr>
<td>MAAJ 5153</td>
<td>Incompressible Non-Viscous Flows</td>
</tr>
<tr>
<td>MAAJ 5154</td>
<td>Compressible Non-Viscous Flows</td>
</tr>
<tr>
<td>MAAJ 5155</td>
<td>Orbital Mechanics and Space Control</td>
</tr>
<tr>
<td>MAAJ 5156</td>
<td>Lightweight Structures</td>
</tr>
<tr>
<td>MAAJ 5158</td>
<td>Experimental Methods in Fluid Mechanics</td>
</tr>
<tr>
<td>MAAJ 5159</td>
<td>Smart Structures</td>
</tr>
<tr>
<td>MAAJ 5251</td>
<td>Guidance, Navigation and Control</td>
</tr>
<tr>
<td>MAAJ 5252</td>
<td>Neuro and Fuzzy Control</td>
</tr>
<tr>
<td>MAAJ 5253</td>
<td>Finite Element Analysis II</td>
</tr>
<tr>
<td>MAAJ 5254</td>
<td>Fundamentals of Combustion</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>MAAJ 5701</td>
<td>Applied Reliability Theory</td>
</tr>
<tr>
<td>MAAJ 5703</td>
<td>Systems Engineer and Integration</td>
</tr>
<tr>
<td>MAAJ 5707</td>
<td>Robot Mechanics</td>
</tr>
<tr>
<td>MAAJ 5709</td>
<td>Manufacturing System Analysis</td>
</tr>
<tr>
<td>MAAJ 5802</td>
<td>Theory of Elastic Instability</td>
</tr>
<tr>
<td>MAAJ 5804</td>
<td>Mechatronics</td>
</tr>
<tr>
<td>MAAJ 5409</td>
<td>Theorie de Turbulence</td>
</tr>
<tr>
<td>MAAJ 5500</td>
<td>Méthodes numeriques en mécanique</td>
</tr>
<tr>
<td>MAAJ 5501</td>
<td>Laminar Flow Theory</td>
</tr>
<tr>
<td>MAAJ 5502</td>
<td>Theory of Turbulence</td>
</tr>
<tr>
<td>MAAJ 5505</td>
<td>Inviscid Flow Theory</td>
</tr>
<tr>
<td>MAAJ 5506</td>
<td>Measurement of Fluid Mech</td>
</tr>
<tr>
<td>MAAJ 5507</td>
<td>Num Comp: Fluid Dyn and Heat Tran</td>
</tr>
<tr>
<td>MAAJ 5700</td>
<td>Computer-Aided Design</td>
</tr>
<tr>
<td>MAAJ 5750</td>
<td>Surfaces and Coatings</td>
</tr>
<tr>
<td>MAAJ 5805</td>
<td>Multivariable Digital Control</td>
</tr>
<tr>
<td>MAAJ 5806</td>
<td>Non-Linear Disc Dyn and Control</td>
</tr>
<tr>
<td>MAAJ 5851</td>
<td>Safety and Risk Assessment of Nuclear Power</td>
</tr>
<tr>
<td>MAAJ 5901</td>
<td>Combustion in Premixed Systems</td>
</tr>
<tr>
<td>MAAJ 5902</td>
<td>Combustion in Diffusion System</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAJ 5700</td>
<td>Computer-Aided Design</td>
</tr>
<tr>
<td>MAAJ 5701</td>
<td>Applied Reliability Theory</td>
</tr>
<tr>
<td>MAAJ 5702</td>
<td>Theory of Turbulence</td>
</tr>
<tr>
<td>MAAJ 5703</td>
<td>Systems Engineer and Integration</td>
</tr>
<tr>
<td>MAAJ 5704</td>
<td>Mechatronics</td>
</tr>
<tr>
<td>MAAJ 5705</td>
<td>Theorie de Turbulence</td>
</tr>
<tr>
<td>MAAJ 5706</td>
<td>Measurement of Fluid Mech</td>
</tr>
<tr>
<td>MAAJ 5707</td>
<td>Num Comp: Fluid Dyn and Heat Tran</td>
</tr>
<tr>
<td>MAAJ 5708</td>
<td>Computer-Aided Design</td>
</tr>
<tr>
<td>MAAJ 5750</td>
<td>Surfaces and Coatings</td>
</tr>
<tr>
<td>MAAJ 5805</td>
<td>Multivariable Digital Control</td>
</tr>
<tr>
<td>MAAJ 5806</td>
<td>Non-Linear Disc Dyn and Control</td>
</tr>
<tr>
<td>MAAJ 5851</td>
<td>Safety and Risk Assessment of Nuclear Power</td>
</tr>
<tr>
<td>MAAJ 5901</td>
<td>Combustion in Premixed Systems</td>
</tr>
<tr>
<td>MAAJ 5902</td>
<td>Combustion in Diffusion System</td>
</tr>
</tbody>
</table>

With the approval of the Department, the following courses can be placed in one of the above categories:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAJ 5011</td>
<td>Advanced Topics in Advanced Materials and Manufacturing</td>
</tr>
<tr>
<td>MAAJ 5308</td>
<td>Advanced Topics in Mechanical Engineering</td>
</tr>
<tr>
<td>MAAJ 5311</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MAAJ 5312</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MAAJ 5313</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MAAJ 5314</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MAAJ 5315</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MAAJ 5316</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MAAJ 5317</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MAAJ 5318</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MAAJ 5319</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MAAJ 5402</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MAAJ 5403</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MAAJ 5852</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MAAJ 5853</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MAAJ 5854</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MAAJ 5855</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MAAJ 5856</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MAAJ 5857</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
<tr>
<td>MAAJ 5858</td>
<td>Special Topics in Mechanical and Aerospace Engineering</td>
</tr>
</tbody>
</table>

Regulations

See the General Regulations section of this Calendar.

Regularly Scheduled Break

For immigration purposes in the programs listed below, the summer term (May to August) is considered a regularly scheduled break approved by the University. Students should resume full-time studies in September.

- M.Eng. Aerospace (coursework and research project pathways only)
- M.Eng. Materials (coursework and research project pathways only)
- M.Eng. Mechanical (coursework and research project pathways only)

Note: a Regularly Scheduled Break as described for immigration purposes does not supersede the requirement for continuous registration in Thesis, Research Essay, or Independent Research Project as described in Section 8.2 of the Graduate General Regulations.

Admission

The normal requirement for admission to the master's program is a bachelor's degree with at least high honours standing in mechanical or aerospace engineering or a related discipline.

Admission

The normal requirement for admission to the Ph.D. program is a master's degree in mechanical or aerospace engineering or a related discipline.

Students who are in the master's program may be admitted to the Ph.D. program if they show outstanding academic performance and demonstrate significant promise for advanced research, upon recommendation of the department. In addition, graduate courses offered by departments in other disciplines may be taken for credit with approval by the department in which the student is registered.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAJ 5001</td>
<td>Theory of Elasticity</td>
<td>0.5</td>
<td>AMM 5101</td>
</tr>
<tr>
<td>MAAJ 5002</td>
<td>Advanced Stress Analysis</td>
<td>0.5</td>
<td>AMM 5102</td>
</tr>
<tr>
<td>MAAJ 5003</td>
<td>Theory Perfectly Plastic Solid</td>
<td>0.5</td>
<td>AMM 5103</td>
</tr>
<tr>
<td>MAAJ 5004</td>
<td>Theory of Plates and Shells</td>
<td>0.5</td>
<td>MCG 5104</td>
</tr>
<tr>
<td>MAAJ 5005</td>
<td>Continuum Mechanics</td>
<td>0.5</td>
<td>MCG 5105</td>
</tr>
<tr>
<td>MAAJ 5006</td>
<td>Advanced Topics in Elasticity</td>
<td>0.5</td>
<td>AMM 5106</td>
</tr>
<tr>
<td>MAAJ 5007</td>
<td>Adv. Dynamics w/Applications</td>
<td>0.5</td>
<td>MCG 5107</td>
</tr>
<tr>
<td>MAAJ 5008</td>
<td>Finite Element Analysis</td>
<td>0.5</td>
<td>MCG 5108</td>
</tr>
<tr>
<td>MAAJ 5009</td>
<td>Advanced Topics in Finite Element Analysis</td>
<td>0.5</td>
<td>MCG 5109</td>
</tr>
<tr>
<td>MAAJ 5010</td>
<td>Performance and Economics of V/Stol Aircraft</td>
<td>0.5</td>
<td>MCG 5310</td>
</tr>
<tr>
<td>MAAJ 5011</td>
<td>Advanced Topics in Advanced Materials and Manufacturing</td>
<td>0.5</td>
<td>AMM 5138</td>
</tr>
<tr>
<td>MAAJ 5012</td>
<td>Computational Metallurgy</td>
<td>0.5</td>
<td>AMM 5364</td>
</tr>
<tr>
<td>MAAJ 5013</td>
<td>Advanced Dynamics</td>
<td>0.5</td>
<td>MCG 5125</td>
</tr>
<tr>
<td>MAAJ 5014</td>
<td>Ground Transportation Systems and Vehicles</td>
<td>0.5</td>
<td>MCG 5314</td>
</tr>
<tr>
<td>MAAJ 5015</td>
<td>Micro and Nano Systems</td>
<td>0.5</td>
<td>MCG 5120</td>
</tr>
<tr>
<td>MAAJ 5021</td>
<td>Methods of Energy Conversion</td>
<td>0.5</td>
<td>MCG 5321</td>
</tr>
<tr>
<td>MAAJ 5022</td>
<td>Nuclear Engineering</td>
<td>0.5</td>
<td>MCG 5322</td>
</tr>
<tr>
<td>MAAJ 5025</td>
<td>Wind Engineering</td>
<td>0.5</td>
<td>MCG 5325</td>
</tr>
<tr>
<td>MAAJ 5026</td>
<td>System Modelling, Dynamics and Control</td>
<td>0.5</td>
<td>MCG 5326</td>
</tr>
<tr>
<td>MAAJ 5027</td>
<td>Nonlinear System Analysis</td>
<td>0.5</td>
<td>MCG 5327</td>
</tr>
<tr>
<td>MAAJ 5028</td>
<td>3D Machine Vision: From Robots to the Space Station</td>
<td>0.5</td>
<td>MCG 5328</td>
</tr>
<tr>
<td>MAAJ 5030</td>
<td>Engineering Acoustics</td>
<td>0.5</td>
<td>MCG 5330</td>
</tr>
<tr>
<td>MAAJ 5031</td>
<td>Aero-Acoustics</td>
<td>0.5</td>
<td>MCG 5331</td>
</tr>
<tr>
<td>MAAJ 5042</td>
<td>Gas Turbines</td>
<td>0.5</td>
<td>MCG 5342</td>
</tr>
<tr>
<td>MAAJ 5048</td>
<td>Convective Heat and Mass Transfers</td>
<td>0.5</td>
<td>MCG 5348</td>
</tr>
<tr>
<td>MAAJ 5050</td>
<td>Fundamentals of Fluid Dynamics</td>
<td>0.5</td>
<td>MCG 5300</td>
</tr>
<tr>
<td>MAAJ 5051</td>
<td>Deformation and Fracture of Engineering Materials</td>
<td>0.5</td>
<td>AMM 5130</td>
</tr>
<tr>
<td>MAAJ 5052</td>
<td>Failure Analysis of High-Temperature Protective Coatings for Aerospace Applications</td>
<td>0.5</td>
<td>AMM 5122</td>
</tr>
<tr>
<td>MAAJ 5053</td>
<td>Fatigue and Damage Tolerance in Aircraft</td>
<td>0.5</td>
<td>AMM 5124</td>
</tr>
<tr>
<td>MAAJ 5054</td>
<td>Finite-Volume Methods for Compressible Flows</td>
<td>0.5</td>
<td>MCG 5147</td>
</tr>
</tbody>
</table>
MAAJ 5055 [0.5 credit] (MCG 5148)
High-Performance Parallel Scientific Computing

MAAJ 5056 [0.5 credit] (AMM 5125)
Materials Characterization Techniques

MAAJ 5057 [0.5 credit] (AMM 5121)
Materials Selection in Engineering Design

MAAJ 5058 [0.5 credit] (MCG 5149)
Non-Equilibrium Gas Dynamics

MAAJ 5059 [0.5 credit] (MCG 5309)
Environmental Fluid Mechanics
Includes: Experiential Learning Activity
Also listed as MECH 5009.

MAAJ 5100 [0.5 credit] (MCG 5110)
Micromechanics of Solids

MAAJ 5101 [0.5 credit] (MCG 5111)
Gas Dynamics

MAAJ 5102 [0.5 credit] (AMM 5317)
Experimental Stress Analysis

MAAJ 5103 [0.5 credit] (AMM 5374)
Integrated Manufacturing - CIMS

MAAJ 5105 [0.5 credit] (MCG 5115)
Non-Linear Optimization

MAAJ 5107 [0.5 credit] (AMM 5117)
Intro to Composite Materials
Includes: Experiential Learning Activity

MAAJ 5108 [0.5 credit] (AMM 5118)
Introduction to Plasticity

MAAJ 5109 [0.5 credit] (AMM 5119)
Fracture Mechanics

MAAJ 5122 [0.5 credit] (MCG 5352)
Optimal Control Systems

MAAJ 5123 [0.5 credit] (MCG 5353)
Robotics

MAAJ 5151 [0.5 credit] (MCG 5311)
Dynamics and Aerodynamics of Flight
Includes: Experiential Learning Activity
Also listed as MECH 5101.

MAAJ 5152 [0.5 credit] (MCG 5301)
Theory of Viscous Flows

MAAJ 5153 [0.5 credit] (MCG 5303)
Incompressible Non-Viscous Flows

MAAJ 5154 [0.5 credit] (MCG 5304)
Compressible Non-Viscous Flows

MAAJ 5155 [0.5 credit] (MCG 5315)
Orbital Mechanics and Space Control
Includes: Experiential Learning Activity
Also listed as MECH 5105.

MAAJ 5156 [0.5 credit] (AMM 5381)
Lightweight Structures

MAAJ 5157 [0.5 credit] (MCG 5121)
Space Mission Analysis and Design

MAAJ 5158 [0.5 credit] (MCG 5308)
Experimental Methods in Fluid Mechanics

MAAJ 5159 [0.5 credit] (MCG 5122)
Smart Structures

MAAJ 5206 [0.5 credit] (AMM 5126)
Deformation of Materials

MAAJ 5209 [0.5 credit] (AMM 5129)
Hot Working of Metals

MAAJ 5215 [0.5 credit] (MCG 5354)
Guidance, Navigation and Control

MAAJ 5222 [0.5 credit] (MCG 5356)
Neuro and Fuzzy Control

MAAJ 5223 [0.5 credit] (MCG 5366)
Finite Element Analysis II
MAAJ 5254 [0.5 credit] (MCG 5483)
Fundamentals of Combustion
Also listed as MECH 5204.

MAAJ 5255 [0.5 credit] (MCG 5324)
Building Performance Simulation
Includes: Experiential Learning Activity
Also listed as MECH 5205.

MAAJ 5301 [0.5 credit] (MCG 5131)
Heat Transfer by Conduction

MAAJ 5302 [0.5 credit] (MCG 5132)
Heat Transfer by Convection

MAAJ 5303 [0.5 credit] (MCG 5133)
Heat Transfer by Radiation

MAAJ 5304 [0.5 credit] (MCG 5134)
Heat Transfer w/Phase Change

MAAJ 5305 [0.5 credit] (MCG 5343)
Advanced Thermodynamics

MAAJ 5306 [0.5 credit] (MCG 5136)
Special Studies in Fluid Mech and Heat Transfer

MAAJ 5307 [0.5 credit] (AMM 5137)
Special Studies in Solid Mechanics and Materials

MAAJ 5308 [0.5 credit] (MCG 5138)
Advanced Topics in Mechanical Engineering

MAAJ 5309 [0.5 credit] (MCG 5375)
CAD/CAM

MAAJ 5311 [0.5 credit] (MCG 5471)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5312 [0.5 credit] (MCG 5472)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5313 [0.5 credit] (MCG 5473)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5314 [0.5 credit] (MCG 5474)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5315 [0.5 credit] (MCG 5475)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5316 [0.5 credit] (MCG 5476)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5317 [0.5 credit] (MCG 5477)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5318 [0.5 credit] (MCG 5478)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5319 [0.5 credit] (MCG 5479)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5320 [0.5 credit] (MCG 5480)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5321 [0.5 credit] (MCG 5481)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5322 [0.5 credit] (MCG 5482)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5323 [0.5 credit] (MCG 5483)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5324 [0.5 credit] (MCG 5484)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5325 [0.5 credit] (MCG 5485)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5326 [0.5 credit] (MCG 5486)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5327 [0.5 credit] (MCG 5487)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5328 [0.5 credit] (MCG 5488)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5329 [0.5 credit] (MCG 5489)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5330 [0.5 credit] (MCG 5490)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5331 [0.5 credit] (MCG 5491)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5332 [0.5 credit] (MCG 5492)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5333 [0.5 credit] (MCG 5493)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5334 [0.5 credit] (MCG 5494)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5335 [0.5 credit] (MCG 5495)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5336 [0.5 credit] (MCG 5496)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5337 [0.5 credit] (MCG 5497)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5338 [0.5 credit] (MCG 5498)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5339 [0.5 credit] (MCG 5499)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5340 [0.5 credit] (MCG 5344)
Gas Turbine Combustion

MAAJ 5341 [0.5 credit] (MCG 5345)
Computational Fluid Dynamics of Compressible Flow
Also listed as MECH 5304.

MAAJ 5342 [0.5 credit] (MCG 5346)
Theory of Subsonic Flows

MAAJ 5343 [0.5 credit] (MCG 5347)
Theory of Supersonic Flows

MAAJ 5344 [0.5 credit] (MCG 5348)
Statistical Thermodynamics

MAAJ 5345 [0.5 credit] (MCG 5349)
Special Topics in Mechanical and Aeronautical Engineering

MAAJ 5346 [0.5 credit] (MCG 5350)
Special Topics in Mechanical and Aeronautical Engineering

MAAJ 5347 [0.5 credit] (MCG 5351)
Special Topics in Mechanical and Aeronautical Engineering

MAAJ 5348 [0.5 credit] (MCG 5352)
Special Topics in Mechanical and Aeronautical Engineering

MAAJ 5349 [0.5 credit] (MCG 5353)
Special Topics in Mechanical and Aeronautical Engineering

MAAJ 5350 [0.5 credit] (MCG 5354)
Special Topics in Mechanical and Aeronautical Engineering

MAAJ 5351 [0.5 credit] (MCG 5355)
Special Topics in Mechanical and Aeronautical Engineering

MAAJ 5352 [0.5 credit] (MCG 5356)
Special Topics in Mechanical and Aeronautical Engineering

MAAJ 5353 [0.5 credit] (MCG 5357)
Special Topics in Mechanical and Aeronautical Engineering

MAAJ 5354 [0.5 credit] (MCG 5358)
Special Topics in Mechanical and Aeronautical Engineering

MAAJ 5355 [0.5 credit] (MCG 5359)
Special Topics in Mechanical and Aeronautical Engineering

MAAJ 5356 [0.5 credit] (MCG 5360)
Special Topics in Mechanical and Aeronautical Engineering

MAAJ 5357 [0.5 credit] (MCG 5361)
Special Topics in Mechanical and Aeronautical Engineering

MAAJ 5358 [0.5 credit] (MCG 5362)
Special Topics in Mechanical and Aeronautical Engineering

MAAJ 5359 [0.5 credit] (MCG 5363)
Special Topics in Mechanical and Aeronautical Engineering

MAAJ 5360 [0.5 credit] (MCG 5364)
Special Topics in Mechanical and Aeronautical Engineering

MAAJ 5361 [0.5 credit] (MCG 5365)
Special Topics in Mechanical and Aeronautical Engineering
MAAJ 5403 [0.5 credit] (MCG 5470)
Special Topics in Mechanical and Aerospace Engineering

MAAJ 5408 [0.5 credit] (MCG 5551)
Theorie d’Ecoulement Visqueux

MAAJ 5409 [0.5 credit] (MCG 5552)
Theorie de Turbulence

MAAJ 5451 [0.5 credit] (MCG 5341)
Turbomachinery
Includes: Experiential Learning Activity
Also listed as MECH 5401.

MAAJ 5452 [0.5 credit] (AMM 5144)
Superalloys and Ceramix-Metal Matrix Composites

MAAJ 5457 [0.5 credit] (MCG 5347)
Conductive and Radiative Heat Transfer
Also listed as MECH 5407.

MAAJ 5459 [0.5 credit] (MCG 5349)
Two-Phase Flow and Heat Transfer

MAAJ 5500 [0.5 credit] (MCG 5557)
Méthodes numeriques en mécanique

MAAJ 5501 [0.5 credit] (MCG 5151)
Laminar Flow Theory

MAAJ 5502 [0.5 credit] (MCG 5152)
Theory of Turbulence

MAAJ 5505 [0.5 credit] (MCG 5155)
Inviscid Flow Theory

MAAJ 5506 [0.5 credit] (MCG 5156)
Measurement of Fluid Mech

MAAJ 5507 [0.5 credit] (MCG 5157)
Num Comp:Fluid Dyn and Heat Tran

MAAJ 5509 [0.5 credit] (AMM 5159)
Advanced Production Planning and Control

MAAJ 5550 [0.5 credit] (MCG 5350)
Advanced Vibration Analysis
Includes: Experiential Learning Activity
Also listed as MECH 5500.

MAAJ 5555 [0.5 credit] (MCG 5355)
Stability Theory & Application
Also listed as MECH 5505.

MAAJ 5557 [0.5 credit] (MCG 5124)
Advanced Kinematics
Includes: Experiential Learning Activity
Also listed as MECH 5507.

MAAJ 5607 [0.5 credit] (MCG 5167)
Nuclear Reactor Engineering

MAAJ 5608 [0.5 credit] (AMM 5168)
Industrial Organization

MAAJ 5609 [0.5 credit] (MCG 5169)
Advanced Topics in Reliability Engineer

MAAJ 5652 [0.5 credit] (MCG 5367)
The Boundary Element Method
Includes: Experiential Learning Activity
Also listed as MECH 5607.

MAAJ 5655 [0.5 credit] (MCG 5365)
Finite Element Analysis I
Also listed as MECH 5605.

MAAJ 5656 [0.5 credit] (MCG 5367)
The Boundary Element Method
Includes: Experiential Learning Activity
Also listed as MECH 5607.

MAAJ 5670 [0.5 credit] (MCG 5170)
Computer-Aided Design
Includes: Experiential Learning Activity

MAAJ 5701 [0.5 credit] (MCG 5171)
Applied Reliability Theory
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>Credits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAAJ 5703</td>
<td>Systems Engineer and Integration</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>MAAJ 5707</td>
<td>Robot Mechanics</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>MAAJ 5709</td>
<td>Manufacturing System Analysis</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>MAAJ 5750</td>
<td>Surfaces and Coatings</td>
<td>0.5</td>
<td>Also listed as MECH 5700.</td>
</tr>
<tr>
<td>MAAJ 5751</td>
<td>Metallic Phases and Transformations</td>
<td>0.5</td>
<td>Precludes additional credit for MECH 5701.</td>
</tr>
<tr>
<td>MAAJ 5802</td>
<td>Theory of Elastic Instability</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>MAAJ 5804</td>
<td>Mechatronics</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>MAAJ 5805</td>
<td>Multivariable Digital Control</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>MAAJ 5806</td>
<td>Non-Linear Disc Dyn and Control</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>MAAJ 5850</td>
<td>Special Topics in Mechanical and Aerospace</td>
<td>0.5</td>
<td>Also listed as MECH 5800.</td>
</tr>
<tr>
<td>MAAJ 5851</td>
<td>Safety and Risk Assessment of Nuclear Power</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>MAAJ 5852</td>
<td>Special Topics in Mechanical and Aerospace</td>
<td>0.5</td>
<td>Also listed as MECH 5802.</td>
</tr>
<tr>
<td>MAAJ 5853</td>
<td>Special Topics in Mechanical and Aerospace</td>
<td>0.5</td>
<td>Also listed as MECH 5803.</td>
</tr>
<tr>
<td>MAAJ 5854</td>
<td>Special Topics in Mechanical and Aerospace</td>
<td>0.5</td>
<td>Also listed as MECH 5804.</td>
</tr>
<tr>
<td>MAAJ 5855</td>
<td>Special Topics in Mechanical and Aerospace</td>
<td>0.5</td>
<td>Also listed as MECH 5805.</td>
</tr>
<tr>
<td>MAAJ 5857</td>
<td>Special Topics in Mechanical and Aerospace</td>
<td>0.5</td>
<td>Also listed as MECH 5807.</td>
</tr>
<tr>
<td>MAAJ 5858</td>
<td>Special Topics in Mechanical and Aerospace</td>
<td>0.5</td>
<td>Also listed as MECH 5808.</td>
</tr>
<tr>
<td>MAAJ 5859</td>
<td>Safety and Risk Assessment of Nuclear Power</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>MAAJ 5860</td>
<td>Special Topics in Mechanical and Aerospace</td>
<td>0.5</td>
<td>Also listed as MECH 5800.</td>
</tr>
<tr>
<td>MAAJ 5901</td>
<td>Combustion in Premixed Systems</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>MAAJ 5902</td>
<td>Combustion in Diffusion System</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>MECH 5000</td>
<td>Fundamentals of Fluid Dynamics</td>
<td>0.5</td>
<td>Equations of fluid motion: Navier-Stokes and Euler's equations. 2D and 3D</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>irrotational flows: potential and stream functions; superposition; numerical</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>modelling; Boundary- and free-shear layers: laminar, transitional and</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>turbulent states. RANS turbulence models. Self-similarity, momentum-integral</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and numerical modelling of thin shear layers.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Also listed as MAAJ 5050.</td>
</tr>
<tr>
<td>MECH 5001</td>
<td>Theory of Viscous Flows</td>
<td>0.5</td>
<td>Navier-Stokes and boundary layer equations; mean flow equations for turbulent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>kinetic energy; integral formulations. Stability, transition, turbulence,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reynolds stresses; separation. Calculation methods, closure schemes.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Compressibility, heat transfer, and three-dimensional effects.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Includes: Experiential Learning Activity</td>
</tr>
</tbody>
</table>
MECH 5003 [0.5 credit] (MCG 5303)
Incompressible Non-Viscous Flow
The fundamental equations and theorems for non-viscous fluid flow; solution of two-dimensional and axisymmetric potential flows; low-speed airfoil and cascade theory; wing lifting-line theory; panel methods.

MECH 5004 [0.5 credit] (MCG 5304)
Compressible Non-Viscous Flow
Steady isentropic, frictional, and diabatic flow; shock waves; irrotational compressible flow, small perturbation theory and similarity rules; second-order theory and unsteady, one-dimensional flow.

MECH 5005 [0.5 credit]
Uninhabited Aircraft Systems Design
Theory of flight and air vehicle performance; propulsion systems; launch and recovery. Regulatory development; privacy policies. Mission design; sensor performance. Guidance, navigation, control and communications theory. System-level reliability; life cycle cost assessment. Includes: Experiential Learning Activity

MECH 5006 [0.5 credit]
Solar Energy
This course will take an in-depth look at solar radiation fundamentals, solar collector design and performance, heat transfer characteristics of solar collectors, energy storage, passive and active thermal systems, photovoltaics and applications of solar energy for collection and utilization.

MECH 5008 [0.5 credit] (MCG 5308)
Experimental Methods in Fluid Mechanics
Fundamentals of techniques of simulation of fluid dynamic phenomena. Theoretical basis, principles of design, performance and instrumentation of ground test facilities. Applications to aerodynamic testing. Includes: Experiential Learning Activity

MECH 5009 [0.5 credit] (MCG 5309)
Environmental Fluid Mechanics Relating to Energy Utilization
Characteristics of energy sources and emissions into the environment. The atmosphere; stratification and stability, equations of motion, simple winds, mean flow, turbulence structure and dispersion near the ground. Flow and dispersion in groundwater, rivers, lakes and oceans. Physical and analytical modeling of environmental flows. Includes: Experiential Learning Activity Also listed as MAAJ 5059.

MECH 5101 [0.5 credit] (MCG 5311)
Dynamics and Aerodynamics of Flight
Aircraft nonlinear equations of motion and their linearization; effect of stability and control derivatives on the open-loop dynamics response; autopilot design and aircraft stability and control augmentation; pilot-in-the-loop; aeroelastic effects on stability and control. Includes: Experiential Learning Activity Also listed as MAAJ 5151.

MECH 5103 [0.5 credit] (MCG 5328)
3D Machine Vision: From Robots to the Space Station
Through lectures and project work, this course introduces fundamental 3D machine vision methods (triangulation and time-of-flight), presents cutting-edge neural network approaches, and explores major engineering applications (e.g. robotics, autonomous vehicles, space navigation) where perception of the 3D environment is essential.

MECH 5105 [0.5 credit] (MCG 5315)
Orbital Mechanics and Space Control
Orbital dynamics and perturbations due to the Earth's figure, the sun, and the moon with emphasis on mission planning and analysis. Rigid body dynamics applied to transfer orbit and on-orbit momentum management and control of spacecraft. Effects of flexible structures on a spacecraft control system. Includes: Experiential Learning Activity Also listed as MAAJ 5155.

MECH 5106 [0.5 credit] (MCG 5121)
Space Mission Analysis and Design
Review of solar system and space exploration. Space mission design and geometry. Analysis of orbit design, transfers, interplanetary trajectories. Effect of environment on spacecraft design. Space propulsion and launch vehicle design. Launch sequence, windows, cost. Reusable launch systems.

MECH 5107 [0.5 credit] (AMM 5317)
Experimental Stress Analysis
MECH 5108 [0.5 credit] (MCG 5329)
Space Robotics
This course covers the full spectrum of manipulator robotics applied to in-orbit servicing, repair of spacecraft and removal of orbital debris as the first step towards developing a space infrastructure. It covers space manipulator missions, kinematics, dynamics, trajectory generation, control systems, and some special topics.

MECH 5201 [0.5 credit] (MCG 5321)
Methods of Energy Conversion
Technical, economic and environmental aspects of present and proposed large-scale systems of energy conversion.

MECH 5202 [0.5 credit] (MCG 5122)
Smart Structures
An introduction to the fundamentals of smart materials and structures: mechanisms and classification of the smart materials; their fundamental characteristics and operating principals; sensors and actuators design; design framework of smart structures; control experimentation of smart structures; application case studies.

MECH 5203 [0.5 credit] (MCG 5322)
Nuclear Engineering
Reactor design and safety requirement overview; reactor physics, chemistry and engineering, CANDU reactor design and operation; CANDU reactor fuel channels, thermalhydraulics and fuel; reactor safety design and analysis; IAEA and Canadian safety analysis requirements; reactor accidents; nuclear energy policy.

MECH 5204 [0.5 credit] (MCG 5483)
Fundamentals of Combustion

MECH 5205 [0.5 credit] (MCG 5324)
Building Performance Simulation
During this course students will develop an understanding of the methodologies and theory employed historically and contemporarily in the Building Performance Simulation (BPS) field, develop capabilities for extending the functionality of BPS tools, and establish skills in applying BPS tools in research, analysis, and design. Includes: Experiential Learning Activity
Also listed as MAAJ 5255.

MECH 5206 [0.5 credit] (MCG 5325)
Wind Engineering
Theoretical and practical areas pertinent to the operation of wind turbines. World energy needs, wind farms versus traditional power plants, global wind characteristics, efficient turbine design, electrical components, modes of turbine operation and control, mechanical design, economic and environmental concerns.

MECH 5300 [0.5 credit] (MCG 5330)
Engineering Acoustics
Review of acoustic waves in compressible fluids; acoustic pressure, intensity and impedance; physical interpretation and measurement; transmission through media; layers, in-homogeneous media, solids; acoustic systems; rooms, ducts, resonators, mufflers, properties of transducers; microphones, loudspeakers, computational acoustics.

MECH 5301 [0.5 credit] (MCG 5331)
Aeroacoustics
The convected wave equation; theory of subsonic and supersonic jet noise; propeller and helicopter noise; fan and compressor noise; boundary layer noise, interior noise; propagation in the atmosphere; sonic boom; impact on environment. Includes: Experiential Learning Activity

MECH 5302 [0.5 credit] (MCG 5332)
Instrumentation Techniques
An introduction for the non-specialists to the concepts of digital and analog electronics with emphasis on data acquisition, processing and analysis. Topics covered include operational amplifiers, signal processing, digital logic systems, computer interfacing, noise in electronic systems. Hands-on sessions illustrate theory and practice. Also listed as MAAJ 5352.
MECH 5304 [0.5 credit] (MCG 5334)
Computational Fluid Dynamics of Compressible Flows
Solution techniques for parabolic, elliptic and hyperbolic equations developed for problems of interest to fluid dynamics with appropriate stability considerations. A staged approach to solution of full Euler and Navier-Stokes equations is used. Grid generation techniques appropriate for compressible flows are introduced. Also listed as MAAJ 5354.

MECH 5400 [0.5 credit] (MCG 5344)
Gas Turbine Combustion
Combustion fundamentals and gas turbine combustor design. Combustion fundamentals include fuel evaporation, chemistry of combustion, chemical kinetics and emissions formation and introduction to computational combustion modelling. Combustor design addresses the interrelationship between operational requirements and combustion fundamentals. Precludes additional credit for MECH 5800 (MCG 5480) when MECH 5800 was offered with this topic.

MECH 5401 [0.5 credit] (MCG 5341)
Turbomachinery
Also listed as MAAJ 5451.

MECH 5402 [0.5 credit] (MCG 5342)
Gas Turbines

MECH 5403 [0.5 credit] (MCG 5343)
Advanced Thermodynamics
The course covers three major topics: review of fundamentals from a consistent viewpoint, properties and equations of state, and applications and special topics. The third topic includes an introduction to statistical thermodynamics.

MECH 5404 [0.5 credit] (MCG 5344)
Conductive and Radiative Heat Transfer
Analytical, numerical and analog solutions to steady-state and transient conduction heat transfer in multi-dimensional systems. Radiative heat exchange between black, grey, non-grey diffusive and specular surfaces, including effects of athermanous media. Also listed as MAAJ 5457.

MECH 5405 [0.5 credit] (MCG 5345)
Convective Heat and Mass Transfer
Analogies between heat, mass and momentum transfer. Forced and free convection relations for laminar and turbulent flows analytically developed where possible and otherwise deduced from experimental results, for simple shapes and in heat exchangers. Mass transfer theory and applications.

MECH 5500 [0.5 credit] (MCG 5350)
Advanced Vibration Analysis
General theory of continuous and discrete multi-degree-of-freedom vibrating systems. Emphasis on numerical techniques of solving complex vibrating systems, with selected applications from aerospace, civil, and mechanical engineering. Includes: Experiential Learning Activity
Also listed as MAAJ 5550.

MECH 5501 [0.5 credit] (MCG 5125)
Advanced Dynamics
Developing and applying the governing equations of motion for discrete and continuous mechanical systems. Includes Newton-Euler and Lagrangian formulations; classical and finite element approaches for continuous systems; and linear stability, frequency response, and propagation solution methods. Includes: Experiential Learning Activity

MECH 5502 [0.5 credit] (MCG 5352)
Optimal Control Systems
MECH 5503 [0.5 credit] (MCG 5353)
Robotics
The history of and introduction to robotics methodology. Robots and manipulators; homogeneous transformation, kinematic equations, solving kinematic equations, differential relationships, motion trajectories, dynamics. Control; feedback control, compliance, servomotors, actuators, external and internal sensors, grippers and vision systems. Microprocessors and their application to robot control. Programming.

MECH 5504 [0.5 credit] (MCG 5354)
Guidance, Navigation and Control

MECH 5505 [0.5 credit] (MCG 5355)
Stability Theory and Applications
Fundamental concepts and characteristics of modern stability definitions. Sensitivity and variational equations; linear variational equations; phase space analysis; Lyapunov's direct method. Autonomous and nonautonomous systems; stability in first approximation; the effect of force type on stability; frequency method. Also listed as MAAJ 5555.

MECH 5506 [0.5 credit] (MCG 5356)
Neuro and Fuzzy Control

MECH 5507 [0.5 credit] (MCG 5124)
Advanced Kinematics
Algebraic-geometry applications: kinematic calibration of serial and in-parallel robots; kinematic synthesis of planar, spherical, spatial mechanisms. Various DH-parametrisations, Jacobian formulations. Topics in: projective geometry; Cayley-Klein geometries; Plücker line coordinates; Gröbner bases; Grassmannians; kinematic mapping; Burmester theory. Emphasis on practical applications. Includes: Experiential Learning Activity Also listed as MAAJ 5557.

MECH 5508 [0.5 credit] (MCG 5326)
System Modelling, Dynamics and Control
The course provides an understanding of system modelling and the connection between energy domains. Within the temporal and/or frequency domains, system identification techniques and control aspects are explored for discrete and continuous systems along with lumped and distributed parameter models.

MECH 5509 [0.5 credit] (MCG 5327)
Nonlinear Systems Analysis & Controls

MECH 5601 [0.5 credit] (MCG 5361)
Creative Problem Solving and Design
Problem-solving processes and how they can be applied in engineering design. Emphasis on learning methodologies rather than accumulating information. Techniques can be successfully applied in any engineering specialty. Also listed as MAAJ 5657.

MECH 5602 [0.5 credit] (AMM 5362)
Failure Prevention (Fracture Mechanics and Fatigue)
Design of engineering structures to ensure against failure due to fatigue or brittle fracture. Nature of fatigue and brittle fracture; selection of suitable material, geometry, and inspection procedures for the load and environmental conditions. Also listed as MAAJ 5652.

MECH 5603 [0.5 credit] (AMM 5381)
Lightweight Structures

MECH 5604 [0.5 credit] (AMM 5364)
Computational Metallurgy
MECH 5605 [0.5 credit] (MCG 5365)
Finite Element Analysis I
An introduction to the finite element methodology, with emphasis on applications to heat transfer, fluid flow and stress analysis. The basic concepts of Galerkin’s method, interpolation, numerical integration, and isoparametric elements are taught using simple examples. Also listed as MAAJ 5655.

MECH 5606 [0.5 credit] (MCG 5366)
Finite Element Analysis II
Time marching heat flow problems with linear and nonlinear analysis. Static plasticity. Time-dependent deformation problems; viscoplasticity, viscoelasticity, and dynamic analysis. Isoparametric elements and numerical integration are used throughout.

MECH 5607 [0.5 credit] (MCG 5367)
The Boundary Element Method (BEM)
Integral equations. The BIE for potential theory and for elastostatics in two-dimensions. Boundary elements and numerical integration schemes. Practical applications. Includes: Experiential Learning Activity
Also listed as MAAJ 5656.

MECH 5609 [0.5 credit] (AMM 5123)
Microstructure and Properties of Materials
Essential microstructural features of metals and alloys: crystal structure, dislocations, grain boundaries. The importance of these features in controlling mechanical properties is emphasized. Analytical techniques observing microstructure in metals and other materials: TEM, SEM, electron diffraction, spectrometry.
Also listed as MAAJ 5659.

MECH 5700 [0.5 credit] (AMM 5345)
Surfaces and Coatings
Surface characteristics of solid materials and surface degradation/failure mechanisms including wear, fretting, oxidation, corrosion, and erosion are introduced. Coating methods including PVD, CVD, laser, thermal spray and electrochemical deposition are discussed in the context of failure prevention measures.
Also listed as MAAJ 5750.

MECH 5701 [0.5 credit] (AMM 5369)
Metallic Phases and Transformations
Thermodynamics of crystals, phase diagrams, principles of alloy phases, thermal analysis. Transformation rate and mechanisms. Short and long range diffusional transformations, diffusionless transformations. Phase transformations in engineering systems.
Also listed as MAAJ 5751.

MECH 5704 [0.5 credit] (AMM 5374)
Integrated Manufacturing Systems (CIMS)
Topics essential to CIMS including computer graphics, geometric modeling, numerically controlled machining, and flexible manufacturing. The fundamental data structures and procedures for computerization of engineering design, analysis and production. Also offered at the undergraduate level, with different requirements, as MECH 4704, for which additional credit is precluded.

MECH 5705 [0.5 credit] (MCG 5375)
CAD/CAM
Computer aided design and manufacturing methodology through hands-on experience and state-of-the-art software. Topics include mathematical representation, solid modeling, drafting, mechanical assembly, mechanism design and CNC machining. CAD data exchange standards, rapid prototyping, concurrent engineering and design for X are also discussed.

MECH 5800 [0.5 credit] (MCG 5480)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.
Also listed as MAAJ 5850.

MECH 5801 [0.5 credit] (MCG 5489)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.

MECH 5802 [0.5 credit] (MCG 5483)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.
Also listed as MAAJ 5852.

MECH 5803 [0.5 credit] (MCG 5488)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.
Also listed as MAAJ 5853.

MECH 5804 [0.5 credit] (MCG 5384)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.
Also listed as MAAJ 5854.
MECH 5805 [0.5 credit] (MCG 5482)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.
Also listed as MAAJ 5855.

MECH 5806 [0.5 credit] (MCG 5486)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.

MECH 5807 [0.5 credit] (MCG 5487)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.
Also listed as MAAJ 5857.

MECH 5808 [0.5 credit] (MCG 5376)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.
Also listed as MAAJ 5858.

MECH 5809 [0.5 credit] (MCG 5382)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.

MECH 5906 [0.5 credit]
Directed Studies

MECH 5908 [1.5 credit] (MCG 5398)
Independent Engineering Study
Students pursuing a master's degree by course work carry out an independent study, analysis, and solution of an engineering problem or design project. The results are given in the form of a written report and presented at a departmental seminar.
Includes: Experiential Learning Activity

MECH 5909 [2.5 credits]
M.A.Sc. Thesis
Includes: Experiential Learning Activity

MECH 6909 [0.0 credit]
Ph.D. Thesis
Includes: Experiential Learning Activity