Biology

This section presents the requirements for programs in:

- Bioinformatics B.Sc. Honours
- Biology B.Sc. Honours
- Biology with Concentration in Biodiversity, Natural History, and Conservation Science B.Sc. Honours
- Biology with Concentration in Ecology, Evolution and Behaviour B.Sc. Honours
- Biology with Concentration in Health Science B.Sc. Honours
- Biology with Concentration in Molecular and Cellular Biology B.Sc. Honours
- Biology with Concentration in Physiology B.Sc. Honours
- Biology B.Sc. Major
- Biology B.A.
- Biology B.A. Combined Honours
- Minor in Biology

Program Requirements

Course Categories for Biology Programs

The program descriptions below make use of the following course categories that are defined in the Bachelor of Science Regulations in this Calendar.

- Science Faculty Electives
- Advanced Science Faculty Electives
- Science Continuation
- Science Geography
- Science Psychology
- Approved Courses Outside the Faculties of Science and Engineering and Design
- Free Electives
- Restricted Courses: Students in the Biology B.Sc., Biology B.Sc. Major, and Biology B.Sc. Honours programs (except students in the Biology B.A, Biology B.A. Honours and Biology B.A. Combined Honours programs) may use Technology, Society, Environment courses TSES 3001, TSES 3002, TSES 3500, TSES 4001, TSES 4002, TSES 4003, TSES 4005, TSES 4006, TSES 4007 to fulfill degree requirements, but only as free electives.

Bioinformatics

B.Sc. Honours (20.0 credits)

A. Credits included in the Major CGPA (12.5 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1103</td>
<td>Foundations of Biology I</td>
</tr>
<tr>
<td>BIOL 1104</td>
<td>Foundations of Biology II</td>
</tr>
<tr>
<td>BIOL 2104</td>
<td>Introductory Genetics</td>
</tr>
<tr>
<td>BIOL 2200</td>
<td>Cellular Biochemistry</td>
</tr>
<tr>
<td>BIOL 3104</td>
<td>Molecular Genetics</td>
</tr>
<tr>
<td>BIOL 4106</td>
<td>Advances in Molecular Biology</td>
</tr>
<tr>
<td>BIOL 4905</td>
<td>Honours Workshop</td>
</tr>
<tr>
<td></td>
<td>or BIOL 4906 [1.0] Interdisciplinary Research Project</td>
</tr>
<tr>
<td></td>
<td>or BIOL 4907 [1.0] Honours Essay and Research Proposal</td>
</tr>
<tr>
<td></td>
<td>or BIOL 4908 [1.0] Honours Research Thesis</td>
</tr>
</tbody>
</table>

2. 0.5 credit from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2001</td>
<td>Animals: Form and Function</td>
</tr>
<tr>
<td>BIOL 2002</td>
<td>Plants: Form and Function</td>
</tr>
<tr>
<td>BIOL 2303</td>
<td>Microbiology</td>
</tr>
<tr>
<td>BIOL 3102</td>
<td>Mycology</td>
</tr>
<tr>
<td>BIOL 3305</td>
<td>Human and Comparative Physiology</td>
</tr>
<tr>
<td>BIOL 3306</td>
<td>Human Anatomy and Physiology</td>
</tr>
</tbody>
</table>

3. 3.5 credits from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 2300</td>
<td>Physical Biochemistry</td>
</tr>
<tr>
<td>BIOL 3008</td>
<td>Bioinformatics</td>
</tr>
<tr>
<td>BIOL 3101</td>
<td>General Biochemistry I</td>
</tr>
<tr>
<td>BIOL 3102</td>
<td>General Biochemistry II</td>
</tr>
<tr>
<td>BIOL 3202</td>
<td>Biophysical Techniques and Applications</td>
</tr>
<tr>
<td>BIOL 4008</td>
<td>Computational Systems Biology</td>
</tr>
<tr>
<td>BIOL 4104</td>
<td>Evolutionary Genetics</td>
</tr>
<tr>
<td>BIOL 4202</td>
<td>Mutagenesis and DNA Repair</td>
</tr>
</tbody>
</table>

4. 1.0 credit in BIOL or BIOL or COMP or MATH or STAT at the 3000-level or higher

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3901</td>
<td>Research Proposal</td>
</tr>
<tr>
<td>BIOL 4901</td>
<td>Directed Special Studies</td>
</tr>
</tbody>
</table>

5. 0.5 credit from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 3901</td>
<td>Research Proposal</td>
</tr>
<tr>
<td>BIOL 4901</td>
<td>Directed Special Studies</td>
</tr>
</tbody>
</table>

6. 3.0 credits in

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP 1005</td>
<td>Introduction to Computer Science I</td>
</tr>
<tr>
<td>COMP 1006</td>
<td>Introduction to Computer Science II</td>
</tr>
<tr>
<td>COMP 2401</td>
<td>Introduction to Systems Programming</td>
</tr>
<tr>
<td>COMP 2402</td>
<td>Abstract Data Types and Algorithms</td>
</tr>
<tr>
<td>COMP 2404</td>
<td>Introduction to Software Engineering</td>
</tr>
<tr>
<td>COMP 2406</td>
<td>Fundamentals of Web Applications</td>
</tr>
</tbody>
</table>

B. Credits not included in the Major CGPA (7.5)

7. 2.0 credits in:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1001</td>
<td>General Chemistry I</td>
</tr>
<tr>
<td>&amp; CHEM 1002</td>
<td>General Chemistry II</td>
</tr>
<tr>
<td>CHEM 2203</td>
<td>Organic Chemistry I</td>
</tr>
<tr>
<td>&amp; CHEM 2204</td>
<td>Organic Chemistry II</td>
</tr>
</tbody>
</table>

8. 1.0 credit from:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 1007</td>
<td>Elementary University Physics I</td>
</tr>
<tr>
<td>&amp; PHYS 1008</td>
<td>Elementary University Physics II</td>
</tr>
<tr>
<td>PHYS 1003</td>
<td>Introductory Mechanics and Thermodynamics</td>
</tr>
<tr>
<td>&amp; PHYS 1004</td>
<td>Introductory Electromagnetism and Wave Motion</td>
</tr>
</tbody>
</table>

9. 2.0 credits in:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1007</td>
<td>Elementary Calculus I</td>
</tr>
<tr>
<td>MATH 1107</td>
<td>Linear Algebra I</td>
</tr>
<tr>
<td>STAT 2507</td>
<td>Introduction to Statistical Modeling I</td>
</tr>
</tbody>
</table>

2021-2022 Carleton University Undergraduate Calendar
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2.5 credits in:</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 1103 [0.5]</td>
<td>Foundations of Biology I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 1104 [0.5]</td>
<td>Foundations of Biology II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 4905 [1.0]</td>
<td>Biological Methods, Analysis and Interpretation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or BIOL 4907 [1.0]</td>
<td>Honours Workshop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or BIOL 4908 [1.0]</td>
<td>Honours Essay and Research Proposal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. 2.5 credits from:</td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 2001 [0.5]</td>
<td>Animals: Form and Function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 2002 [0.5]</td>
<td>Plants: Form and Function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 2104 [0.5]</td>
<td>Introductory Genetics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 2200 [0.5]</td>
<td>Cellular Biochemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 2303 [0.5]</td>
<td>Microbiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 2600 [0.5]</td>
<td>Ecology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. 0.5 credit from:</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 3201 [0.5]</td>
<td>Cell Biology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 3205 [0.5]</td>
<td>Plant Biochemistry and Physiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 3303 [0.5]</td>
<td>Experimental Microbiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 3305 [0.5]</td>
<td>Human and Comparative Physiology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. 1.0 credit in BIOL at the 2000-level or higher</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. 3.5 credits in BIOL or BIOC at the 3000-level or higher</td>
<td>3.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. 0.5 credit from:</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 3901 [0.5]</td>
<td>Research Proposal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOL 4901 [0.5]</td>
<td>Directed Special Studies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or 4000-level BIOL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. 1.0 credit in Advanced Science Faculty Electives</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. Credits not included in the Major CGPA (8.5 credits)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. 1.0 credit in</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 1001 [0.5]</td>
<td>General Chemistry I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>&amp; CHEM 1002 [0.5]</td>
<td>General Chemistry II (See Note 2, below)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. 0.5 credit in:</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1007 [0.5]</td>
<td>Elementary Calculus I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. 1.0 credit from:</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 1005 [0.5]</td>
<td>Introduction to Computer Science I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP 1006 [0.5]</td>
<td>Introduction to Computer Science II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 1107 [0.5]</td>
<td>Linear Algebra I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 1007 [0.5]</td>
<td>Elementary University Physics I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or PHYS 1003 [0.5]</td>
<td>Introductory Mechanics and Thermodynamics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 1008 [0.5]</td>
<td>Elementary University Physics II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>or PHYS 1004 [0.5]</td>
<td>Introductory Electromagnetism and Wave Motion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT 2507 [0.5]</td>
<td>Introduction to Statistical Modeling I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. 1.0 credit in Science Faculty Electives</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. 2.0 credits in Science Continuation (not in BIOL)</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. 2.0 credits in Approved Courses Outside the Faculties of Science and Engineering and Design (may include NSCI 1000)</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. 1.0 credit in free electives.</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td>20.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**Biology**

**B.Sc. Honours (20.0 credits)**

A. Credits included in the Major CGPA (11.5 credits)

1. 2.5 credits in:
   - BIOL 1103 [0.5]  Foundations of Biology I
   - BIOL 1104 [0.5]  Foundations of Biology II
   - BIOL 4905 [1.0]  Biological Methods, Analysis and Interpretation
   - BIOL 4907 [1.0]  Honours Workshop
   - BIOL 4908 [1.0]  Honours Essay and Research Proposal

2. 2.5 credits from:
   - BIOL 2001 [0.5]  Animals: Form and Function
   - BIOL 2002 [0.5]  Plants: Form and Function
   - BIOL 2104 [0.5]  Introductory Genetics
   - BIOL 2200 [0.5]  Cellular Biochemistry
   - BIOL 2303 [0.5]  Microbiology
   - BIOL 2600 [0.5]  Ecology

3. 0.5 credit from:
   - BIOL 3201 [0.5]  Cell Biology
   - BIOL 3205 [0.5]  Plant Biochemistry and Physiology
   - BIOL 3303 [0.5]  Experimental Microbiology
   - BIOL 3305 [0.5]  Human and Comparative Physiology

4. 1.0 credit in BIOL at the 2000-level or higher

5. 3.5 credits in BIOL or BIOC at the 3000-level or higher

6. 0.5 credit from:
   - BIOL 3901 [0.5]  Research Proposal
   - BIOL 4901 [0.5]  Directed Special Studies
   - or 4000-level BIOL

7. 1.0 credit in Advanced Science Faculty Electives

B. Credits not included in the Major CGPA (8.5 credits)

8. 1.0 credit in
   - CHEM 1001 [0.5]  General Chemistry I
   - & CHEM 1002 [0.5]  General Chemistry II (See Note 2, below)

9. 0.5 credit in:
   - MATH 1007 [0.5]  Elementary Calculus I

10. 1.0 credit from:
    - COMP 1005 [0.5]  Introduction to Computer Science I
    - COMP 1006 [0.5]  Introduction to Computer Science II
    - MATH 1107 [0.5]  Linear Algebra I
    - PHYS 1007 [0.5]  Elementary University Physics I
      - or PHYS 1003 [0.5]  Introductory Mechanics and Thermodynamics
    - PHYS 1008 [0.5]  Elementary University Physics II
      - or PHYS 1004 [0.5]  Introductory Electromagnetism and Wave Motion
    - STAT 2507 [0.5]  Introduction to Statistical Modeling I

11. 1.0 credit in Science Faculty Electives

12. 2.0 credits in Science Continuation (not in BIOL)

13. 2.0 credits in Approved Courses Outside the Faculties of Science and Engineering and Design (may include NSCI 1000)

14. 1.0 credit in free electives.

Total Credits: 20.0

**Biology with Concentration in Biodiversity, Natural History, and Conservation Science**

B.Sc. Honours (20.0 credits)

A. Credits Included in the Major CGPA (11.5 credits)

1. 2.5 credits in:
   - BIOL 1103 [0.5]  Foundations of Biology I
   - BIOL 1104 [0.5]  Foundations of Biology II
   - BIOL 4905 [1.0]  Biological Methods, Analysis and Interpretation
   - BIOL 4907 [1.0]  Honours Workshop
   - BIOL 4908 [1.0]  Honours Essay and Research Proposal

2. 2.5 credits in:
   - BIOL 2001 [0.5]  Animals: Form and Function
   - BIOL 2002 [0.5]  Plants: Form and Function
   - BIOL 2104 [0.5]  Introductory Genetics
   - BIOL 2200 [0.5]  Cellular Biochemistry
   - BIOL 2600 [0.5]  Ecology

3. 0.5 credit from:
   - BIOL 3201 [0.5]  Cell Biology
   - BIOL 3205 [0.5]  Plant Biochemistry and Physiology
   - BIOL 3303 [0.5]  Experimental Microbiology
   - BIOL 3305 [0.5]  Human and Comparative Physiology
   - BIOL 4207 [0.5]  Advanced Embryology & Developmental Biology

4. 3.0 credits in:
   - BIOL 2903 [0.5]  Natural History and Ecology of Ontario
   - BIOL 3602 [0.5]  Conservation Biology
   - BIOL 3604 [0.5]  Statistics for Biologists
   - BIOL 3605 [0.5]  Principles of Biogeography
   - BIOL 3609 [0.5]  Evolutionary Concepts
   - BIOL 3611 [0.5]  Evolutionary Ecology
   - BIOL 4104 [0.5]  Evolutionary Genetics

5. 1.0 credit from:
   - BIOL 2303 [0.5]  Microbiology
   - BIOL 3004 [0.5]  Insect Diversity
   - BIOL 3102 [0.5]  Mycology
   - BIOL 3202 [0.5]  Principles of Developmental Biology
   - BIOL 3303 [0.5]  Experimental Microbiology
   - BIOL 3601 [0.5]  Ecosystems and Environmental Change
   - BIOL 3605 [0.5]  Field Course I
   - BIOL 3801 [0.5]  Plants and Herbivores
   - BIOL 3802 [0.5]  Animal Behaviour

6. 1.5 credits from:
   - BIOL 4103 [0.5]  Population Genetics
   - BIOL 4203 [0.5]  Evolution of Sex
Students are encouraged to consider the following courses:

- **NSCI 1000** of Science and Engineering and Design (may include 1.0 credits in BIOL)
- 2.0 credits in:
  - BIOL 4504 [0.5] Ecology of Freshwater Invertebrates
  - BIOL 4505 [0.5] Coral Reefs
  - BIOL 4506 [0.5] Cactus Biology
  - BIOL 4602 [0.5] Evolutionary Applications across Disciplines: From Medicine to Conservation
- 0.5 credit in:
  - BIOL 4603 [0.5] Insect Evolution and Biology
  - BIOL 4604 [0.5] Landscape Ecology

**B. Credits Not included in the Major CGPA (8.5 credits)**

- **1.0 credit in:**
  - CHEM 1001 [0.5] General Chemistry I
  - CHEM 1002 [0.5] General Chemistry II
- **0.5 credit in:**
  - MATH 1007 [0.5] Elementary Calculus I

**10. 1.0 credit from:**

- **1.0 credit in:**
  - COMP 1005 [0.5] Introduction to Computer Science I
  - COMP 1006 [0.5] Introduction to Computer Science II
  - MATH 1107 [0.5] Linear Algebra I
  - PHYS 1007 [0.5] Elementary University Physics I
  - PHYS 1008 [0.5] Elementary University Physics II
  - STAT 2507 [0.5] Introduction to Statistical Modeling I

**11. 1.0 credit in:**

- **Science Faculty electives**

**12. 2.0 credits in:**

- **Science Continuation courses (not in BIOL)**

Students are encouraged to consider the following courses as options:

- ERTH 2312 [0.5] Paleontology
- ENSC 3106 [0.5] Aquatic Science and Management

**13. 2.0 credits in:**

- **Approved Courses outside the Faculties of Science and Engineering and Design (may include NSCI 1000)**

Students are encouraged to consider the following courses as options:

- ENST 2000 [0.5] Environmental Justice
- ENST 2001 [0.5] Sustainable Futures: Environmental Challenges and Solutions
- ENST 3022 [0.5] Environmental and Natural Resources
- INDG 2015 [0.5] Indigenous Ecological Ways of Knowing

**14. 1.0 credit in free electives**

**Total Credits:** 20.0

**Biology with Concentration in Ecology, Evolution and Behaviour**

**B.Sc. Honours (20.0 credits)**

**A. Credits Included in the Major CGPA (11.5 credits)**

- **2.5 credits in:**
  - BIOL 1103 [0.5] Foundations of Biology I
  - BIOL 1104 [0.5] Foundations of Biology II
  - BIOL 1105 [0.5] Biological Methods, Analysis and Interpretation

**or BIOL 4905 [1.0] Honours Workshop**

- **Honours Essay and Research Proposal**
- **Honours Research Thesis**

- **2.5 credits in:**
  - BIOL 2001 [0.5] Animals: Form and Function
  - BIOL 2002 [0.5] Plants: Form and Function
  - BIOL 2104 [0.5] Introductory Genetics
  - BIOL 2200 [0.5] Cellular Biochemistry
  - BIOL 2600 [0.5] Ecology

- **3. 0.5 credit from:**
  - BIOL 3201 [0.5] Cell Biology
  - BIOL 3205 [0.5] Plant Biochemistry and Physiology
  - BIOL 3303 [0.5] Experimental Microbiology
  - BIOL 3305 [0.5] Human and Comparative Physiology

- **4. 1.0 credit from:**
  - BIOL 3609 [0.5] Evolutionary Concepts
  - BIOL 3811 [0.5] Evolutionary Ecology
  - BIOL 3802 [0.5] Animal Behaviour

- **5. 2.0 credits from:**
  - BIOL 3004 [0.5] Insect Diversity
  - BIOL 3104 [0.5] Molecular Genetics
  - BIOL 3111 [0.5] Vertebrate Evolution: Mammals, Reptiles, and Birds
  - BIOL 3112 [0.5] Vertebrate Evolution: Fish and Amphibians
  - BIOL 3202 [0.5] Principles of Developmental Biology
  - BIOL 3601 [0.5] Ecosystems and Environmental Change
  - BIOL 3602 [0.5] Conservation Biology
  - BIOL 3604 [0.5] Statistics for Biologists
  - BIOL 3605 [0.5] Field Course I
  - BIOL 3609 [0.5] Evolutionary Concepts
  - BIOL 3608 [0.5] Principles of Biogeography
  - BIOL 3611 [0.5] Evolutionary Ecology
  - BIOL 3612 [0.5] Computational Methods in Ecology and Evolution
  - BIOL 3801 [0.5] Plants and Herbivores
  - BIOL 3802 [0.5] Animal Behaviour
  - BIOL 3804 [0.5] Social Evolution

- **6. 2.0 credits from:**
  - BIOL 4102 [0.5] Molecular Ecology
  - BIOL 4103 [0.5] Population Genetics
  - BIOL 4104 [0.5] Evolutionary Genetics
  - BIOL 4203 [0.5] Evolution of Sex
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 4317 [0.5]</td>
<td>Neuroethology: The Neural Basis of Animal Behaviour</td>
</tr>
<tr>
<td>BIOL 4318 [0.5]</td>
<td>Adaptations to Extreme Environments</td>
</tr>
<tr>
<td>BIOL 4500 [0.5]</td>
<td>The Biology of Birds</td>
</tr>
<tr>
<td>BIOL 4501 [0.5]</td>
<td>The Taxonomy of Birds</td>
</tr>
<tr>
<td>BIOL 4502 [0.5]</td>
<td>Herpetology</td>
</tr>
<tr>
<td>BIOL 4503 [0.5]</td>
<td>Fish Ecology, Conservation and Management</td>
</tr>
<tr>
<td>BIOL 4504 [0.5]</td>
<td>Ecology of Freshwater Invertebrates</td>
</tr>
<tr>
<td>BIOL 4505 [0.5]</td>
<td>Coral Reefs</td>
</tr>
<tr>
<td>BIOL 4506 [0.5]</td>
<td>Cactus Biology</td>
</tr>
<tr>
<td>BIOL 4507 [0.5]</td>
<td>Ecological Parasitology</td>
</tr>
<tr>
<td>BIOL 4602 [0.5]</td>
<td>Evolutionary Applications across Disciplines: From Medicine to Conservation</td>
</tr>
<tr>
<td>BIOL 4604 [0.5]</td>
<td>Landscape Ecology</td>
</tr>
<tr>
<td>BIOL 4802 [0.5]</td>
<td>Advanced Animal Behaviour</td>
</tr>
<tr>
<td>BIOL 3901 [0.5]</td>
<td>Research Proposal</td>
</tr>
<tr>
<td>BIOL 4901 [0.5]</td>
<td>Directed Special Studies</td>
</tr>
<tr>
<td>BIOL 4905 [1.0]</td>
<td>Honours Workshop</td>
</tr>
<tr>
<td>BIOL 2001 [0.5]</td>
<td>Animals: Form and Function</td>
</tr>
<tr>
<td>BIOL 2104 [0.5]</td>
<td>Introductory Genetics</td>
</tr>
<tr>
<td>BIOL 2200 [0.5]</td>
<td>Cellular Biochemistry</td>
</tr>
<tr>
<td>BIOL 2303 [0.5]</td>
<td>Microbiology</td>
</tr>
<tr>
<td>BIOL 3305 [0.5]</td>
<td>Human and Comparative Physiology</td>
</tr>
<tr>
<td>BIOL 3307 [0.5]</td>
<td>Advanced Human Anatomy and Physiology</td>
</tr>
<tr>
<td>BIOC 3101 [0.5]</td>
<td>General Biochemistry I</td>
</tr>
<tr>
<td>BIOC 3102 [0.5]</td>
<td>General Biochemistry II</td>
</tr>
<tr>
<td>BIOL 3005 [0.5]</td>
<td>Directed Special Studies</td>
</tr>
<tr>
<td>BIOL 4201 [0.5]</td>
<td>Advanced Cell Culture and Tissue Engineering</td>
</tr>
<tr>
<td>BIOL 4206 [0.5]</td>
<td>Human Genetics</td>
</tr>
<tr>
<td>BIOL 4207 [0.5]</td>
<td>Advanced Embryology &amp; Developmental Biology</td>
</tr>
<tr>
<td>BIOL 4303 [0.5]</td>
<td>Advances in Microbiology</td>
</tr>
<tr>
<td>BIOL 4318 [0.5]</td>
<td>Adaptations to Extreme Environments</td>
</tr>
<tr>
<td>BIOL 4009 [0.5]</td>
<td>Biochemistry of Disease</td>
</tr>
<tr>
<td>BIOL 4708 [0.5]</td>
<td>Principles of Toxicology</td>
</tr>
<tr>
<td>BIOL 4106 [0.5]</td>
<td>Advances in Molecular Biology</td>
</tr>
<tr>
<td>BIOL 4200 [0.5]</td>
<td>Immunology</td>
</tr>
<tr>
<td>BIOL 4202 [0.5]</td>
<td>Mutagenesis and DNA Repair</td>
</tr>
<tr>
<td>BIOL 4206 [0.5]</td>
<td>Animal Neurophysiology</td>
</tr>
<tr>
<td>BIOL 4309 [0.5]</td>
<td>Studies in Human Performance</td>
</tr>
<tr>
<td>BIOL 4319 [0.5]</td>
<td>Studies in Exercise Physiology</td>
</tr>
<tr>
<td>BIOL 4901 [0.5]</td>
<td>Directed Special Studies</td>
</tr>
<tr>
<td>BIOL 4908 [1.0]</td>
<td>Honours Essay and Research Proposal</td>
</tr>
<tr>
<td>BIOL 4000 [0.5]</td>
<td>Bioinformatics</td>
</tr>
<tr>
<td>BIOL 4006 [0.5]</td>
<td>Molecular Genetics</td>
</tr>
<tr>
<td>BIOL 4007 [0.5]</td>
<td>Cell Biology</td>
</tr>
<tr>
<td>BIOL 4008 [0.5]</td>
<td>Principles of Developmental Biology</td>
</tr>
<tr>
<td>BIOL 3303 [0.5]</td>
<td>Experimental Microbiology</td>
</tr>
<tr>
<td>BIOL 3501 [0.5]</td>
<td>Biomechanics</td>
</tr>
<tr>
<td>BIOL 4201 [0.5]</td>
<td>Advanced Cell Culture and Tissue Engineering</td>
</tr>
<tr>
<td>BIOL 4206 [0.5]</td>
<td>Human Genetics</td>
</tr>
<tr>
<td>BIOL 4207 [0.5]</td>
<td>Advanced Embryology &amp; Developmental Biology</td>
</tr>
<tr>
<td>BIOL 4303 [0.5]</td>
<td>Advances in Microbiology</td>
</tr>
<tr>
<td>BIOL 4318 [0.5]</td>
<td>Adaptations to Extreme Environments</td>
</tr>
<tr>
<td>BIOL 4009 [0.5]</td>
<td>Biochemistry of Disease</td>
</tr>
<tr>
<td>BIOL 4708 [0.5]</td>
<td>Principles of Toxicology</td>
</tr>
<tr>
<td>BIOL 4106 [0.5]</td>
<td>Advances in Molecular Biology</td>
</tr>
<tr>
<td>BIOL 4200 [0.5]</td>
<td>Immunology</td>
</tr>
<tr>
<td>BIOL 4202 [0.5]</td>
<td>Mutagenesis and DNA Repair</td>
</tr>
<tr>
<td>BIOL 4206 [0.5]</td>
<td>Animal Neurophysiology</td>
</tr>
<tr>
<td>BIOL 4309 [0.5]</td>
<td>Studies in Human Performance</td>
</tr>
<tr>
<td>BIOL 4319 [0.5]</td>
<td>Studies in Exercise Physiology</td>
</tr>
<tr>
<td>BIOL 4901 [0.5]</td>
<td>Directed Special Studies</td>
</tr>
<tr>
<td>BIOL 4908 [1.0]</td>
<td>Honours Essay and Research Proposal</td>
</tr>
</tbody>
</table>

**Biology with Concentration in Health Science**

**B.Sc. Honours (20.0 credits)**

**A. Credits included in the Major CGPA (11.5 credits)**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1103 [0.5]</td>
<td>Foundations of Biology I</td>
</tr>
<tr>
<td>BIOL 1104 [0.5]</td>
<td>Foundations of Biology II</td>
</tr>
<tr>
<td>BIOL 1105 [0.5]</td>
<td>Biological Methods, Analysis and Interpretation</td>
</tr>
<tr>
<td>BIOL 4905 [1.0]</td>
<td>Honours Workshop</td>
</tr>
</tbody>
</table>

**B. Credits Not included in the Major CGPA (8.5 credits)**

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1001 [0.5]</td>
<td>General Chemistry I</td>
</tr>
<tr>
<td>CHEM 1002 [0.5]</td>
<td>General Chemistry II</td>
</tr>
<tr>
<td>MATH 1107 [0.5]</td>
<td>Elementary Calculus I</td>
</tr>
<tr>
<td>COMP 1005 [0.5]</td>
<td>Introduction to Computer Science I</td>
</tr>
<tr>
<td>COMP 1006 [0.5]</td>
<td>Introduction to Computer Science II</td>
</tr>
<tr>
<td>PHYS 1007 [0.5]</td>
<td>Elementary University Physics I</td>
</tr>
<tr>
<td>PHYS 1008 [0.5]</td>
<td>Elementary University Physics II</td>
</tr>
<tr>
<td>STAT 2507 [0.5]</td>
<td>Introduction to Statistical Modeling I</td>
</tr>
</tbody>
</table>

**Total Credits:** 20.0

**Total Credits for Biology with Concentration in Health Science:** 20.0

**Note:** The above list is an example of the courses that might be included in a Biology with Concentration in Health Science program. The specific courses and requirements can vary depending on the institution and program.
### B. Credits not included in the Major CGPA (8.5 credits)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>CHEM 1001 [0.5] General Chemistry I &amp; CHEM 1002 [0.5] General Chemistry II</td>
</tr>
<tr>
<td>2.5</td>
<td>CHEM 2203 [0.5] Organic Chemistry I &amp; CHEM 2204 [0.5] Organic Chemistry II</td>
</tr>
<tr>
<td>0.5</td>
<td>CHEM 2207 [0.5] Introduction to Organic Chemistry I &amp; CHEM 2208 [0.5] Introduction to Organic Chemistry II</td>
</tr>
<tr>
<td>1.0</td>
<td>MATH 1007 [0.5] Elementary Calculus I</td>
</tr>
<tr>
<td>1.0</td>
<td>COMP 1005 [0.5] Introduction to Computer Science I</td>
</tr>
<tr>
<td>1.0</td>
<td>COMP 1006 [0.5] Introduction to Computer Science II</td>
</tr>
<tr>
<td>1.0</td>
<td>MATH 1107 [0.5] Linear Algebra I</td>
</tr>
<tr>
<td>1.0</td>
<td>PHYS 1007 [0.5] Elementary University Physics I or PHYS 1003 [0.5] Introductory Mechanics and Thermodynamics</td>
</tr>
<tr>
<td>1.0</td>
<td>PHYS 1008 [0.5] Elementary University Physics II or PHYS 1004 [0.5] Introductory Electromagnetism and Wave Motion</td>
</tr>
<tr>
<td>1.0</td>
<td>STAT 2507 [0.5] Introduction to Statistical Modeling I</td>
</tr>
<tr>
<td>1.0</td>
<td>PSYC 1001 [0.5] Introduction to Psychology I</td>
</tr>
<tr>
<td>1.0</td>
<td>PSYC 1002 [0.5] Introduction to Psychology II</td>
</tr>
<tr>
<td>1.0</td>
<td>Science Faculty Electives</td>
</tr>
<tr>
<td>1.0</td>
<td>Science Continuation courses (not in BIOL)</td>
</tr>
<tr>
<td>1.0</td>
<td>Approved Courses Outside the Faculties of Science and Engineering and Design (may include NSCI 1000)</td>
</tr>
<tr>
<td>1.0</td>
<td>free electives.</td>
</tr>
</tbody>
</table>

**Total Credits:** 20.0

### Biology with Concentration in Molecular and Cellular Biology

#### B.Sc. Honours (20.0 credits)

**A. Credits included in the Major CGPA (11.5 credits)**

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>BIOL 1103 [0.5] Foundations of Biology I</td>
</tr>
<tr>
<td>2.5</td>
<td>BIOL 1104 [0.5] Foundations of Biology II</td>
</tr>
<tr>
<td>0.5</td>
<td>BIOL 1105 [0.5] Biological Methods, Analysis and Interpretation</td>
</tr>
<tr>
<td>1.0</td>
<td>BIOL 4905 [1.0] Honours Workshop or BIOL 4907 [1.0] Honours Essay and Research Proposal or BIOL 4908 [1.0] Honours Research Thesis</td>
</tr>
<tr>
<td>2.5</td>
<td>BIOL 2001 [0.5] Animals: Form and Function</td>
</tr>
<tr>
<td>0.5</td>
<td>BIOL 2002 [0.5] Plants: Form and Function</td>
</tr>
<tr>
<td>1.0</td>
<td>BIOL 2104 [0.5] Introductory Genetics</td>
</tr>
<tr>
<td>1.0</td>
<td>BIOL 2200 [0.5] Cellular Biochemistry</td>
</tr>
<tr>
<td>1.0</td>
<td>BIOL 2303 [0.5] Microbiology</td>
</tr>
<tr>
<td>0.5</td>
<td>BIOL 3205 [0.5] Plant Biochemistry and Physiology</td>
</tr>
<tr>
<td>0.5</td>
<td>BIOL 3303 [0.5] Experimental Microbiology</td>
</tr>
<tr>
<td>0.5</td>
<td>BIOL 3305 [0.5] Human and Comparative Physiology</td>
</tr>
<tr>
<td>1.0</td>
<td>BIOL 3101 [0.5] General Biochemistry I</td>
</tr>
</tbody>
</table>

**B. Credits Not Included in the Major CGPA (8.5 credits)**

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>CHEM 1001 [0.5] General Chemistry I &amp; CHEM 1002 [0.5] General Chemistry II</td>
</tr>
<tr>
<td>2.5</td>
<td>CHEM 2203 [0.5] Organic Chemistry I &amp; CHEM 2204 [0.5] Organic Chemistry II</td>
</tr>
<tr>
<td>0.5</td>
<td>CHEM 2207 [0.5] Introduction to Organic Chemistry I &amp; CHEM 2208 [0.5] Introduction to Organic Chemistry II</td>
</tr>
<tr>
<td>1.0</td>
<td>BIOL 3104 [0.5] Molecular Genetics</td>
</tr>
<tr>
<td>0.5</td>
<td>BIOL 3201 [0.5] Cell Biology</td>
</tr>
<tr>
<td>2.0</td>
<td>BIOL 3008 [0.5] Bioinformatics</td>
</tr>
<tr>
<td>0.5</td>
<td>BIOL 3202 [0.5] Principles of Developmental Biology</td>
</tr>
<tr>
<td>1.0</td>
<td>BIOL 4008 [0.5] Molecular Plant Development</td>
</tr>
<tr>
<td>0.5</td>
<td>BIOL 4106 [0.5] Advances in Molecular Biology</td>
</tr>
<tr>
<td>1.0</td>
<td>BIOL 4109 [0.5] Laboratory Techniques in Molecular Genetics</td>
</tr>
<tr>
<td>1.0</td>
<td>BIOL 4200 [0.5] Immunology</td>
</tr>
<tr>
<td>0.5</td>
<td>BIOL 4202 [0.5] Mutagenesis and DNA Repair</td>
</tr>
<tr>
<td>1.0</td>
<td>BIOL 4201 [0.5] Advanced Cell Culture and Tissue Engineering</td>
</tr>
<tr>
<td>1.0</td>
<td>BIOL 4207 [0.5] Advanced Embryology &amp; Developmental Biology</td>
</tr>
<tr>
<td>0.5</td>
<td>BIOL 4303 [0.5] Advances in Microbiology</td>
</tr>
</tbody>
</table>

### Biology with Concentration in Physiology

#### B.Sc. Honours (20.0 credits)

**A. Credits Included in the Major CGPA (11.5 credits)**

<table>
<thead>
<tr>
<th>Credits</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>BIOL 1103 [0.5] Foundations of Biology I</td>
</tr>
<tr>
<td>2.5</td>
<td>BIOL 1104 [0.5] Foundations of Biology II</td>
</tr>
<tr>
<td>0.5</td>
<td>BIOL 3101 [0.5] General Biochemistry I</td>
</tr>
<tr>
<td>0.5</td>
<td>BIOC 3102 [0.5] General Biochemistry II</td>
</tr>
</tbody>
</table>

2021-2022 Carleton University Undergraduate Calendar
### Biology

#### B.Sc. Major (20.0 credits)

**A. Credits included in the Major CGPA (9.5 credits)**

1. 1.5 credit in: 1.5
   - BIOL 1103 [0.5] Foundations of Biology I
   - BIOL 1104 [0.5] Foundations of Biology II
   - BIOL 1105 [0.5] Biological Methods, Analysis and Interpretation

2. 2.5 credits from: 2.5
   - BIOL 2001 [0.5] Animals: Form and Function
   - BIOL 2002 [0.5] Plants: Form and Function
   - BIOL 2104 [0.5] Introductory Genetics
   - or BIOL 2107 [0.5] Fundamentals of Genetics

3. 0.5 credit from: 0.5
   - BIOL 3205 [0.5] Plant Biochemistry and Physiology
   - BIOL 3306 [0.5] Cellular Biochemistry
   - BIOL 4201 [0.5] Advanced Cell Culture and Tissue Engineering

4. 3.0 credits in BIOL at the 3000-level or higher: 3.0

5. 2.0 credits in Advanced Science Faculty electives: 2.0

**B. Credits Not included in the Major CGPA (10.5 credits)**

6. 1.0 credit from: 1.0
   - CHEM 1001 [0.5] General Chemistry I & CHEM 1002 [0.5] General Chemistry II
   - CHEM 2203 [0.5] Organic Chemistry I & CHEM 2204 [0.5] Organic Chemistry II (or)
   - CHEM 2207 [0.5] Introduction to Organic Chemistry I & CHEM 2208 [0.5] Introduction to Organic Chemistry II

7. 0.5 credit in: 0.5
   - MATH 1007 [0.5] Elementary Calculus I

8. 1.0 credit from: 1.0
   - MATH 1107 [0.5] Linear Algebra I
   - or PHYS 1007 [0.5] Elementary University Physics I
   - or PHYS 1003 [0.5] Introductory Mechanics and Thermodynamics
   - or PHYS 1008 [0.5] Elementary University Physics II

---

### Mathematics

#### 1.0 credit in Science Faculty electives: 1.0
- COMP 1005 [0.5] Introduction to Computer Science I
- COMP 1006 [0.5] Introduction to Computer Science II
- MATH 1107 [0.5] Linear Algebra I
- STAT 2507 [0.5] Introduction to Statistical Modeling

#### 1.0 credit in free electives: 1.0
- Total Credits: 20.0

---

### Science Faculty electives

- BIOL 3101 [0.5] General Biochemistry I
- BIOL 3102 [0.5] General Biochemistry II
- BIOL 4203 [0.5] Advanced Metabolism
- BIOL 4209 [0.5] Advanced Plant Physiology
- BIOL 4306 [0.5] Animal Neurophysiology
- BIOL 4309 [0.5] Studies in Human Performance
- BIOL 4317 [0.5] Neuroethology: The Neural Basis of Animal Behaviour
- BIOL 4318 [0.5] Adaptations to Extreme Environments
- BIOL 4319 [0.5] Studies in Exercise Physiology

---

### Notes

1. Note 2, below:

2. Note 2, below:

---

### Other Courses

- PHYS 1004 [0.5] Introductory Electromagnetism and Wave Motion
- COMP 1004 [0.5] Introduction to Computer Science II
- MATH 1107 [0.5] Linear Algebra I
- PHYS 1007 [0.5] Elementary University Physics I
- or PHYS 1003 [0.5] Introductory Mechanics and Thermodynamics
- PHYS 1008 [0.5] Elementary University Physics II
or PHYS 1004 [0.5] Introductory Electromagnetism and Wave Motion

<table>
<thead>
<tr>
<th>STAT 2507 [0.5]</th>
<th>1.0 credit in Science Faculty Electives</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. 1.0 credit in Advanced Science Faculty Electives</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>10. 2.0 credits in Science Continuation courses (not in BIOL)</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>11. 2.0 credits in Science Faculty Electives</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>12. 2.0 credits in Approved Courses Outside the Faculties of Science and Engineering and Design (may include NSCI 1000)</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>13. 1.0 credit in free electives.</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>Total Credits</td>
<td>20.0</td>
<td></td>
</tr>
</tbody>
</table>

### Biology

#### B.Sc. (15.0 credits)

**Note:** some advanced Biology courses with laboratory components will not be available to students enrolling in the B.Sc. program.

**A. Credits included in the Major CGPA (6.5 credits)**

1. 1.5 credit in:
   - BIOL 1103 [0.5] Foundations of Biology I
   - BIOL 1104 [0.5] Foundations of Biology II
   - BIOL 1105 [0.5] Biological Methods, Analysis and Interpretation

2. 2.0 credits from:
   - BIOL 2001 [0.5] Animals: Form and Function
   - BIOL 2002 [0.5] Plants: Form and Function
   - BIOL 2107 [0.5] Fundamentals of Genetics
   - BIOL 2201 [0.5] Cell Biology and Biochemistry
   - BIOL 2303 [0.5] Microbiology
   - BIOL 2600 [0.5] Ecology

3. 0.5 credit in:
   - BIOL 3306 [0.5] Human Anatomy and Physiology

4. 2.5 credits from:
   - BIOL at the 2000-level and 3000-level or higher

**B. Credits Not Included in the Major CGPA (8.5 credits)**

5. 1.0 credit from:
   - CHEM 1001 [0.5] General Chemistry I
   - & CHEM 1002 [0.5] General Chemistry II
   - CHEM 1005 [0.5] Elementary Chemistry I
   - & CHEM 1006 [0.5] Elementary Chemistry II (See Note 2, below)

6. 0.5 credit in:
   - MATH 1007 [0.5] Elementary Calculus I

7. 1.0 credit from:
   - COMP 1005 [0.5] Introduction to Computer Science I
   - COMP 1006 [0.5] Introduction to Computer Science II
   - MATH 1107 [0.5] Linear Algebra I
   - PHYS 1007 [0.5] Elementary University Physics I
   - or PHYS 1003 [0.5] Introductory Mechanics and Thermodynamics
   - PHYS 1008 [0.5] Elementary University Physics II
   - or PHYS 1004 [0.5] Introductory Electromagnetism and Wave Motion
   - STAT 2507 [0.5] Introduction to Statistical Modeling I

8. 2.0 credits in Science Continuation (not in BIOL) | 2.0 |

9. 1.0 credit in Science Faculty Electives | 1.0 |

10. 2.0 credits in Approved Courses Outside the Faculties of Science and Engineering and Design (may include NSCI 1000)

11. 1.0 credit in free electives. | 1.0 |

Total Credits | 15.0 |

### Biology and Biotechnology

#### B.Sc. Honours (20.0 credits)

**A. Credits Included in the Major CGPA (13 credits)**

1. 6.5 credits in:
   - BIOL 1103 [0.5] Foundations of Biology I
   - BIOL 1104 [0.5] Foundations of Biology II
   - BIOL 1105 [0.5] Biological Methods, Analysis and Interpretation

2. 1.5 credit in:
   - BUSI 2800 [0.5] Entrepreneurship
   - BIOL 3101 [0.5] General Biochemistry I
   - BIOL 3102 [0.5] General Biochemistry II

3. 4.0 credits from:
   - BIOL 2300 [0.5] Physical Biochemistry
   - or CHEM 2103 [0.5] Physical Chemistry I
   - BIOL 3008 [0.5] Bioinformatics
   - BIOL 3103 [0.5] Practical Biochemistry I
   - BIOL 3104 [0.5] Practical Biochemistry II
   - BIOL 3202 [0.5] Biophysical Techniques and Applications

4. 0.5 credit from:
   - BIOL 3004 [0.5] Insect Diversity
   - BIOL 3102 [0.5] Mycology
   - BIOL 3205 [0.5] Plant Biochemistry and Physiology
   - BIOL 3303 [0.5] Experimental Microbiology
   - BIOL 3305 [0.5] Human and Comparative Physiology
   - BIOL 3501 [0.5] Biomechanics
   - BIOL 3901 [0.5] Research Proposal
   - CHEM 3700 [0.5] Industrial Applications of Chemistry
   - CHEM 3800 [0.5] The Chemistry of Environmental Pollutants
   - FOOD 3005 [0.5] Food Microbiology
   - BIOL 4001 [0.5] Methods in Biochemistry
   - BIOL 4004 [0.5] Industrial Biochemistry
   - BIOL 4005 [0.5] Biochemical Regulation
   - BIOL 4007 [0.5] Membrane Biochemistry
   - BIOL 4008 [0.5] Computational Systems Biology
   - BIOL 4009 [0.5] Biochemistry of Disease
   - BIOL 4203 [0.5] Advanced Metabolism
   - BIOL 4204 [0.5] Protein Biotechnology
   - BIOL 4708 [0.5] Principles of Toxicology
   - BIOL 4106 [0.5] Advances in Molecular Biology

**Total Credits** | 20.0
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 4109</td>
<td>Laboratory Techniques in Molecular Genetics</td>
</tr>
<tr>
<td>BIOL 4200</td>
<td>Immunology</td>
</tr>
<tr>
<td>BIOL 4201</td>
<td>Advanced Cell Culture and Tissue Engineering</td>
</tr>
<tr>
<td>BIOL 4202</td>
<td>Mutagenesis and DNA Repair</td>
</tr>
<tr>
<td>BIOL 4206</td>
<td>Human Genetics</td>
</tr>
<tr>
<td>BIOL 4304</td>
<td>Forensic Biology</td>
</tr>
<tr>
<td>BIOL 4901</td>
<td>Directed Special Studies</td>
</tr>
<tr>
<td>TSES 4001</td>
<td>Technology and Society: Risk</td>
</tr>
<tr>
<td>TSES 4002</td>
<td>Technology and Society: Forecasting</td>
</tr>
</tbody>
</table>

**A. Credits Included in the Major CGPA (12.0 credits)**

1. **1.0 credit in:**
   - BIOL 4905 [1.0] Honours Workshop
   - or BIOL 4907 [1.0] Honours Essay and Research Proposal
   - or BIOL 4908 [1.0] Honours Research Thesis

2. **2.0 credits in:**
   - CHEM 1001 [0.5] General Chemistry I
   - & CHEM 1002 [0.5] General Chemistry II
   - CHEM 2203 [0.5] Organic Chemistry I
   - & CHEM 2204 [0.5] Organic Chemistry II (See Note, below)

3. **0.5 credit in:**
   - MATH 1007 [0.5] Elementary Calculus I

4. **1.5 credits from:**
   - COMP 1005 [0.5] Introduction to Computer Science I
   - COMP 1006 [0.5] Introduction to Computer Science II
   - MATH 1107 [0.5] Linear Algebra I
   - PHYS 1007 [0.5] Elementary University Physics I
   - or PHYS 1003 [0.5] Introductory Mechanics and Thermodynamics
   - PHYS 1008 [0.5] Elementary University Physics II
   - or PHYS 1004 [0.5] Introductory Electromagnetism and Wave Motion
   - STAT 2507 [0.5] Introduction to Statistical Modeling I

5. **2.0 credits in Approved Courses Outside the Faculties of Science and Engineering and Design (may include NSCI 1000):**

6. **1.0 credit in free electives:**

**Total Credits:** 20.0

**Biology and Earth Sciences**

**B.Sc. Combined Honours (20.0 credits)**

**A. Credits Included in the Major CGPA (12.0 credits)**

1. **1.5 credits in:**
   - BIOL 1103 [0.5] Foundations of Biology I
   - BIOL 1104 [0.5] Foundations of Biology II
   - BIOL 2001 [0.5] Animals: Form and Function

2. **1.0 credit in:**
   - ERTH 1006 [0.5] Exploring Planet Earth
   - ERTH 1009 [0.5] The Earth System Through Time

3. **0.5 credit from:**
   - BIOL 2600 [0.5] Ecology
   - BIOL 3605 [0.5] Field Course I

4. **3.5 credits in BIOL or BIOC, with at least 1.0 credit at the 3000-level and 1.0 credit at the 4000-level:**

5. **3.0 credits in:**
   - ERTH 2102 [0.5] Mineralogy to Petrology
   - ERTH 2312 [0.5] Palaeontology
   - ERTH 2314 [0.5] Sedimentation and Stratigraphy
   - ERTH 3111 [0.5] Vertebrate Evolution: Mammals, Reptiles, and Birds
   - ERTH 3112 [0.5] Vertebrate Evolution: Fish and Amphibians
   - ERTH 3113 [0.5] Geology of Human Origins

6. **0.5 credit from:**
   - ERTH 3203 [0.5] Sedimentology
   - ERTH 3206 [0.5] Sedimentary Depositional Systems

7. **1.0 credit in ERTH at the 4000-level:**

8. **1.0 credit from:**
   - BIOL 4905 [1.0] Honours Workshop
   - BIOL 4907 [1.0] Honours Essay and Research Proposal
   - BIOL 4908 [1.0] Honours Research Thesis
   - ERTH 4908 [1.0] Honours Thesis
   - ERTH 4909 [0.5] Research in Earth Sciences (and 0.5 credit in ERTH at the 4000-level)

**B. Credits Not Included in the Major CGPA (8.0 credits)**

9. **1.0 credit in:**
   - MATH 1007 [0.5] Elementary Calculus I
   - MATH 1107 [0.5] Linear Algebra I

10. **1.0 credit from:**
    - CHEM 1001 [0.5] General Chemistry I
    - & CHEM 1002 [0.5] General Chemistry II
    - CHEM 1005 [0.5] Elementary Chemistry I
    - & CHEM 1006 [0.5] Elementary Chemistry II

11. **1.0 credit in:**
    - PHYS 1007 [0.5] Elementary University Physics I
    - or PHYS 1008 [0.5] Introductory Electromagnetism and Wave Motion

12. **0.5 credit in:**
    - STAT 2507 [0.5] Introduction to Statistical Modeling I

13. **0.5 credit in:**
    - COMP 1005 [0.5] Introduction to Computer Science I

14. **1.0 credit in Science Continuation courses:**

15. **2.0 credits in Approved Courses Outside the Faculties of Science and Engineering and Design (may include NSCI 1000):**

16. **1.0 credit in free electives:**

**Total Credits:** 20.0

**Biology and Physics**

**B.Sc. Combined Honours (20.0 credits)**

**A. Credits Included in the Major CGPA (12.5 credits)**

1. **1.0 credit from:**
   - PHYS 1001 [0.5] Foundations of Physics I
   - & PHYS 1002 [0.5] Foundations of Physics II (recommended)
   - PHYS 1003 [0.5] Introductory Mechanics and Thermodynamics
   - PHYS 1004 [0.5] Introductory Electromagnetism and Wave Motion

2. **3.5 credits in:**
   - PHYS 2604 [0.5] Modern Physics I

3. **1.0 credit in:**
   - PHYS 1007 [0.5] Elementary University Physics I
   - or PHYS 1008 [0.5] Elementary University Physics II

4. **0.5 credit in:**
   - STAT 2507 [0.5] Introduction to Statistical Modeling I

5. **0.5 credit in:**
   - COMP 1005 [0.5] Introduction to Computer Science I

6. **1.0 credit in:**
   - COMP 1005 [0.5] Introduction to Computer Science I

7. **2.0 credits in:**
   - STAT 2507 [0.5] Introduction to Statistical Modeling I
   - COMP 1005 [0.5] Introduction to Computer Science I

8. **1.0 credit in:**
   - PHYS 1007 [0.5] Elementary University Physics I
   - or PHYS 1008 [0.5] Elementary University Physics II

9. **1.0 credit in:**
   - PHYS 1007 [0.5] Elementary University Physics I
   - or PHYS 1008 [0.5] Elementary University Physics II

**Total Credits:** 20.0
<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 2202 [0.5]</td>
<td>Wave Motion and Optics</td>
</tr>
<tr>
<td>PHYS 2305 [0.5]</td>
<td>Electricity and Magnetism</td>
</tr>
<tr>
<td>PHYS 2401 [0.5]</td>
<td>Thermal Physics</td>
</tr>
<tr>
<td>PHYS 3007 [0.5]</td>
<td>Third Year Physics Laboratory: Selected Experiments and Seminars</td>
</tr>
<tr>
<td>PHYS 3207 [0.5]</td>
<td>Topics in Biophysics</td>
</tr>
<tr>
<td>PHYS 3701 [0.5]</td>
<td>Elements of Quantum Mechanics</td>
</tr>
<tr>
<td>PHYS 3308 [0.5]</td>
<td>Electromagnetism</td>
</tr>
<tr>
<td>PHYS 3606 [0.5]</td>
<td>Modern Physics II</td>
</tr>
<tr>
<td>PHYS 3802 [0.5]</td>
<td>Advanced Dynamics</td>
</tr>
<tr>
<td>PHYS 3308 [0.5]</td>
<td>Electromagnetism</td>
</tr>
<tr>
<td>PHYS 3606 [0.5]</td>
<td>Modern Physics II</td>
</tr>
<tr>
<td>PHYS 3802 [0.5]</td>
<td>Advanced Dynamics</td>
</tr>
<tr>
<td>PHYS 4203 [0.5]</td>
<td>Physical Applications of Fourier Analysis</td>
</tr>
<tr>
<td>PHYS 4409 [0.5]</td>
<td>Thermodynamics and Statistical Physics</td>
</tr>
<tr>
<td>PHYS 4707 [0.5]</td>
<td>Introduction to Quantum Mechanics I</td>
</tr>
<tr>
<td>BIOL 1103 [0.5]</td>
<td>Foundations of Biology I</td>
</tr>
<tr>
<td>BIOL 1104 [0.5]</td>
<td>Foundations of Biology II</td>
</tr>
<tr>
<td>BIOL 2200 [0.5]</td>
<td>Cellular Biochemistry</td>
</tr>
<tr>
<td>BIOL 2104 [0.5]</td>
<td>Introductory Genetics</td>
</tr>
<tr>
<td>BIOL 2001 [0.5]</td>
<td>Animals: Form and Function</td>
</tr>
<tr>
<td>BIOL 2002 [0.5]</td>
<td>Plants: Form and Function</td>
</tr>
<tr>
<td>BIOL 3201 [0.5]</td>
<td>Cell Biology</td>
</tr>
<tr>
<td>BIOL 3104 [0.5]</td>
<td>Molecular Genetics</td>
</tr>
<tr>
<td>BIOL 3305 [0.5]</td>
<td>Human and Comparative Physiology</td>
</tr>
<tr>
<td>BIOL 3501 [0.5]</td>
<td>Biomechanics</td>
</tr>
<tr>
<td>BIOL 4106 [0.5]</td>
<td>Advances in Molecular Biology</td>
</tr>
<tr>
<td>BIOL 4109 [0.5]</td>
<td>Laboratory Techniques in Molecular Genetics</td>
</tr>
<tr>
<td>BIOL 4201 [0.5]</td>
<td>Advanced Cell Culture and Tissue Engineering</td>
</tr>
<tr>
<td>BIOL 4202 [0.5]</td>
<td>Mutagenesis and DNA Repair</td>
</tr>
<tr>
<td>BIOL 4301 [0.5]</td>
<td>Current Topics in Biotechnology</td>
</tr>
<tr>
<td>BIOL 4306 [0.5]</td>
<td>Animal Neurophysiology</td>
</tr>
<tr>
<td>BIOL 4309 [0.5]</td>
<td>Studies in Human Performance</td>
</tr>
<tr>
<td>BIOL 4319 [0.5]</td>
<td>Studies in Exercise Physiology</td>
</tr>
<tr>
<td>BIOL 4905 [1.0]</td>
<td>Honours Workshop</td>
</tr>
<tr>
<td>BIOL 4907 [1.0]</td>
<td>Honours Essay and Research Proposal</td>
</tr>
<tr>
<td>BIOL 4908 [1.0]</td>
<td>Honours Research Thesis</td>
</tr>
<tr>
<td>BIOL 4909 [1.0]</td>
<td>Fourth-Year Project</td>
</tr>
<tr>
<td>PHYS 4907 plus 0.5 credit 4000-level PHYS</td>
<td></td>
</tr>
<tr>
<td>PHYS 4908 plus 0.5 credit 4000-level PHYS</td>
<td></td>
</tr>
<tr>
<td>CHEM 1001 [0.5]</td>
<td>General Chemistry I</td>
</tr>
<tr>
<td>&amp; CHEM 1002 [0.5]</td>
<td>General Chemistry II</td>
</tr>
<tr>
<td>MATH 1004 [0.5]</td>
<td>Calculus for Engineering or Physics</td>
</tr>
<tr>
<td>MATH 1005 [0.5]</td>
<td>Differential Equations and Infinite Series for Engineering or Physics</td>
</tr>
<tr>
<td>MATH 1104 [0.5]</td>
<td>Linear Algebra for Engineering or Science</td>
</tr>
<tr>
<td>STAT 2507 [0.5]</td>
<td>Introduction to Statistical Modeling I</td>
</tr>
<tr>
<td>MATH 2004 [0.5]</td>
<td>Multivariable Calculus for Engineering or Physics</td>
</tr>
<tr>
<td>MATH 3705 [0.5]</td>
<td>Mathematical Methods I</td>
</tr>
<tr>
<td>MATH 3800 [0.5]</td>
<td>Mathematical Modeling and Computational Methods</td>
</tr>
<tr>
<td>COMP 1005 [0.5]</td>
<td>Introduction to Computer Science I</td>
</tr>
<tr>
<td>NSCI 1000 [0.5]</td>
<td>approved courses outside the faculties of Science and Engineering and Design (may include NSCI 1000)</td>
</tr>
<tr>
<td>NEUR 1202 [0.5]</td>
<td>Neuroscience of Mental Health and Psychiatric Disease</td>
</tr>
<tr>
<td>NEUR 1203 [0.5]</td>
<td>Neuroscience of Mental Health and Neurological Disease</td>
</tr>
<tr>
<td>NEUR 2001 [0.5]</td>
<td>Introduction to Research Methods in Neuroscience</td>
</tr>
<tr>
<td>NEUR 2002 [0.5]</td>
<td>Introduction to Statistics in Neuroscience</td>
</tr>
<tr>
<td>NEUR 2201 [0.5]</td>
<td>Cellular and Molecular Neuroscience</td>
</tr>
<tr>
<td>NEUR 2202 [0.5]</td>
<td>Neurodevelopment and Plasticity</td>
</tr>
<tr>
<td>NEUR 3001 [0.5]</td>
<td>Data Analysis in Neuroscience I</td>
</tr>
<tr>
<td>NEUR 3002 [0.5]</td>
<td>Data Analysis in Neuroscience II</td>
</tr>
<tr>
<td>NEUR 3204 [0.5]</td>
<td>Neuropharmacology</td>
</tr>
<tr>
<td>NEUR 3206 [0.5]</td>
<td>Sensory and Motor Neuroscience</td>
</tr>
<tr>
<td>NEUR 3207 [0.5]</td>
<td>Systems Neuroscience</td>
</tr>
<tr>
<td>BIOL 1103 [0.5]</td>
<td>Foundations of Biology I</td>
</tr>
<tr>
<td>BIOL 1104 [0.5]</td>
<td>Foundations of Biology II</td>
</tr>
<tr>
<td>BIOL 2001 [0.5]</td>
<td>Animals: Form and Function</td>
</tr>
<tr>
<td>BIOL 2104 [0.5]</td>
<td>Introductory Genetics</td>
</tr>
<tr>
<td>BIOL 2200 [0.5]</td>
<td>Cellular Biochemistry</td>
</tr>
<tr>
<td>BIOL 3305 [0.5]</td>
<td>Human and Comparative Physiology</td>
</tr>
<tr>
<td>NEUR 3301 [0.5]</td>
<td>Genetics of Mental Health</td>
</tr>
<tr>
<td>NEUR 3303 [0.5]</td>
<td>The Neuroscience of Consciousness</td>
</tr>
<tr>
<td>NEUR 3304 [0.5]</td>
<td>Hormones and Behaviour</td>
</tr>
<tr>
<td>NEUR 3401 [0.5]</td>
<td>Environmental Toxins and Mental Health</td>
</tr>
<tr>
<td>NEUR 3402 [0.5]</td>
<td>Impact of Lifestyle and Social Interactions on Mental Health</td>
</tr>
</tbody>
</table>

**Neuroscience and Biology**

**B.Sc. Combined Honours (20.0 credits)**

**A. Credits Included in the Major CGPA (14.5 credits)**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 1004 [0.5]</td>
<td>Calculus for Engineering or Physics</td>
</tr>
<tr>
<td>MATH 1005 [0.5]</td>
<td>Differential Equations and Infinite Series for Engineering or Physics</td>
</tr>
<tr>
<td>MATH 1104 [0.5]</td>
<td>Linear Algebra for Engineering or Science</td>
</tr>
<tr>
<td>STAT 2507 [0.5]</td>
<td>Introduction to Statistical Modeling I</td>
</tr>
<tr>
<td>MATH 2004 [0.5]</td>
<td>Multivariable Calculus for Engineering or Physics</td>
</tr>
<tr>
<td>MATH 3705 [0.5]</td>
<td>Mathematical Methods I</td>
</tr>
<tr>
<td>MATH 3800 [0.5]</td>
<td>Mathematical Modeling and Computational Methods</td>
</tr>
<tr>
<td>COMP 1005 [0.5]</td>
<td>Introduction to Computer Science I</td>
</tr>
</tbody>
</table>

**B. Credits Not Included in the Major CGPA (7.5 credits)**

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>NEUR 1202 [0.5]</td>
<td>Neuroscience of Mental Health and Psychiatric Disease</td>
</tr>
<tr>
<td>NEUR 1203 [0.5]</td>
<td>Neuroscience of Mental Health and Neurological Disease</td>
</tr>
<tr>
<td>NEUR 2001 [0.5]</td>
<td>Introduction to Research Methods in Neuroscience</td>
</tr>
<tr>
<td>NEUR 2002 [0.5]</td>
<td>Introduction to Statistics in Neuroscience</td>
</tr>
<tr>
<td>NEUR 2201 [0.5]</td>
<td>Cellular and Molecular Neuroscience</td>
</tr>
<tr>
<td>NEUR 2202 [0.5]</td>
<td>Neurodevelopment and Plasticity</td>
</tr>
<tr>
<td>NEUR 3001 [0.5]</td>
<td>Data Analysis in Neuroscience I</td>
</tr>
<tr>
<td>NEUR 3002 [0.5]</td>
<td>Data Analysis in Neuroscience II</td>
</tr>
<tr>
<td>NEUR 3204 [0.5]</td>
<td>Neuropharmacology</td>
</tr>
<tr>
<td>NEUR 3206 [0.5]</td>
<td>Sensory and Motor Neuroscience</td>
</tr>
<tr>
<td>NEUR 3207 [0.5]</td>
<td>Systems Neuroscience</td>
</tr>
<tr>
<td>BIOL 1103 [0.5]</td>
<td>Foundations of Biology I</td>
</tr>
<tr>
<td>BIOL 1104 [0.5]</td>
<td>Foundations of Biology II</td>
</tr>
<tr>
<td>BIOL 2001 [0.5]</td>
<td>Animals: Form and Function</td>
</tr>
<tr>
<td>BIOL 2104 [0.5]</td>
<td>Introductory Genetics</td>
</tr>
<tr>
<td>BIOL 2200 [0.5]</td>
<td>Cellular Biochemistry</td>
</tr>
<tr>
<td>BIOL 3305 [0.5]</td>
<td>Human and Comparative Physiology</td>
</tr>
<tr>
<td>NEUR 3301 [0.5]</td>
<td>Genetics of Mental Health</td>
</tr>
<tr>
<td>NEUR 3303 [0.5]</td>
<td>The Neuroscience of Consciousness</td>
</tr>
<tr>
<td>NEUR 3304 [0.5]</td>
<td>Hormones and Behaviour</td>
</tr>
<tr>
<td>NEUR 3401 [0.5]</td>
<td>Environmental Toxins and Mental Health</td>
</tr>
<tr>
<td>NEUR 3402 [0.5]</td>
<td>Impact of Lifestyle and Social Interactions on Mental Health</td>
</tr>
</tbody>
</table>

Total Credits: 20.0

2021-2022 Carleton University Undergraduate Calendar
Biology
B.A. Honours (20.0 credits)
A. Credits included in the Major CGPA (8.0 credits)
1. 1.5 credit in:
   BIOL 1103 [0.5] Foundations of Biology I
   BIOL 1104 [0.5] Foundations of Biology II
   BIOL 1105 [0.5] Biological Methods, Analysis and Interpretation
2. 2.5 credits from:
   BIOL 2001 [0.5] Animals: Form and Function
   BIOL 2002 [0.5] Plants: Form and Function
   BIOL 2104 [0.5] Introductory Genetics
   or BIOL 2107 [0.5] Fundamentals of Genetics
   BIOL 2200 [0.5] Cellular Biochemistry
   or BIOL 2201 [0.5] Cell Biology and Biochemistry
   BIOL 2303 [0.5] Microbiology
   BIOL 2600 [0.5] Ecology
3. 0.5 credit from:
   BIOL 3205 [0.5] Plant Biochemistry and Physiology
   BIOL 3303 [0.5] Experimental Microbiology
   BIOL 3305 [0.5] Human and Comparative Physiology
   BIOL 3306 [0.5] Human Anatomy and Physiology
4. 1.5 credit in BIOL at the 3000-level or higher
5. 1.0 credits in BIOL
6. 1.0 credit from:
   BIOL 4905 [1.0] Honours Workshop
   or BIOL 4907 [1.0] Honours Essay and Research Proposal
   or BIOL 4908 [1.0] Honours Research Thesis
B. Credits not included in the Major CGPA (12.0 credits)
7. 1.0 credit from:
   CHEM 1001 [0.5] General Chemistry I
   & CHEM 1002 [0.5] General Chemistry II
   CHEM 1005 [0.5] Organic Chemistry II
8. 1.0 credit in:
   CHEM 2003 [0.5] Organic Chemistry II
9. 1.0 credit in:
   CHEM 2205 [0.5] Chemical Reactions
   & CHEM 2206 [0.5] Molecular Structure
   CHEM 2207 [0.5] Physical Chemistry I
   & CHEM 2208 [0.5] Physical Chemistry II
   CHEM 2209 [0.5] Inorganic Chemistry
   & CHEM 2210 [0.5] Inorganic Chemistry II
10. 1.0 credit in:
    CHEM 3211 [0.5] Advanced Inorganic Chemistry
    & CHEM 3212 [0.5] Advanced Physical Chemistry
    CHEM 3213 [0.5] Advanced Physical Chemistry II
    & CHEM 3214 [0.5] Advanced Physical Chemistry III
11. 4.0 credits in approved courses outside of the faculties of Science and Engineering and Design
12. 1.0 credit at the 3000- or 4000-level
13. 2.0 credits in free electives.

Total Credits 20.0

Biology
B.A. (15.0 credits)
Note: some advanced Biology courses with laboratory components will not be available to students enrolling in the B.A. program.
### Biology

**Biology Major (14.0 credits)**

A. Credits included in the Major CGPA (6.0 credits)

<table>
<thead>
<tr>
<th>1. 1.5 credit in:</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1103 [0.5]</td>
<td>Foundations of Biology I</td>
</tr>
<tr>
<td>BIOL 1104 [0.5]</td>
<td>Foundations of Biology II</td>
</tr>
<tr>
<td>BIOL 1105 [0.5]</td>
<td>Biological Methods, Analysis and Interpretation</td>
</tr>
</tbody>
</table>

B. Credits not included in the Major CGPA (9.0 credits)

<table>
<thead>
<tr>
<th>4. 1.0 credit from:</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1001 [0.5]</td>
<td>General Chemistry I</td>
</tr>
<tr>
<td>&amp; CHEM 1002 [0.5]</td>
<td>General Chemistry II</td>
</tr>
<tr>
<td>CHEM 1005 [0.5]</td>
<td>Elementary Chemistry I</td>
</tr>
<tr>
<td>&amp; CHEM 1006 [0.5]</td>
<td>Elementary Chemistry II</td>
</tr>
</tbody>
</table>

5. 1.0 credit in Science Faculty Electives, not in BIOL | 1.0

6. 4.0 credits in approved courses outside of the faculties of Science and Engineering and Design (but may include NSCI 1000) | 4.0

7. 1.0 credit at the 2000-level or higher | 1.0

8. 2.0 credits in free electives. | 2.0

Total Credits | 15.0

---

### Minor in Biology (4.0 credits)

The Minor in Biology is available to students registered in degree programs other than those offered by the Department of Biology.

#### Requirements (4.0 credits)

<table>
<thead>
<tr>
<th>1. 1.0 credit in:</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1103 [0.5]</td>
<td>Foundations of Biology I</td>
</tr>
<tr>
<td>BIOL 1104 [0.5]</td>
<td>Foundations of Biology II</td>
</tr>
</tbody>
</table>

2. 1.0 credit from: | 1.0

| BIOL 1105 [0.5] | Biological Methods, Analysis and Interpretation |
| BIOL 1010 [0.5] | Biotechnology and Society |
| BIOL 1902 [0.5] | Natural History |
| BIOL 2001 [0.5] | Animals: Form and Function |
| BIOL 2002 [0.5] | Plants: Form and Function |
| BIOL 2005 [0.5] | Human Biology |
| BIOL 2107 [0.5] | Fundamentals of Genetics |
| BIOL 2201 [0.5] | Cell Biology and Biochemistry |
| BIOL 2303 [0.5] | Microbiology |
| BIOL 2903 [0.5] | Natural History and Ecology of Ontario |

3. 1.0 credit in BIOL at the 2000-level or higher | 1.0

4. 1.0 credit in BIOL at the 3000-level or higher | 1.0

Total Credits | 4.0

---

### Co-operative Education

For more information about how to apply for the Co-op program and how the Co-op program works please visit the Co-op website.

All students participating in the Co-op program are governed by the Undergraduate Co-operative Education Policy.

#### Undergraduate Co-operative Education Policy

**Admission Requirements**

Students can apply to co-op in one of two ways; directly from high school or after beginning a degree program at Carleton.

If a student is admitted to co-op from high school, their grades will be reviewed two terms to one year prior to their first work term to ensure they continue to meet the academic requirements after their 1st or 2nd year of study. The time at which evaluation takes place depends on the program of study. Students will automatically be notified via their Carleton email account if they are permitted to continue.
Students not admitted to Carleton University with the co-op option on their degree can apply for admission via the co-operative education program website. To view application deadlines, visit carleton.ca/co-op.

Admission to the co-op option is based on the completion of 5.0 or more credits at Carleton University, the CGPA requirement for the students’ academic program as well as any course prerequisites. The articulated CGPA for each program is the normal standard for assessment. Please see the specific degree program sections for the unique admission and continuation requirements for each academic program.

**Participation Requirements**

**COOP 1000**

Once a student has been given admission or continuation confirmation to the co-op option s/he must complete and pass COOP 1000 (a mandatory online 0.0 credit course). Students will have access to this course a minimum of two terms prior to their first work term and will be notified when to register.

**Communication with the Co-op Office**

Students must maintain contact with the co-op office during their job search and while on a work term. All email communication will be conducted via the students’ Carleton email account.

**Employment**

Although every effort is made to ensure a sufficient number of job postings for all students enrolled in the co-op option of their degree program, no guarantee of employment can be made. Carleton’s co-op program operates a competitive job search process and is dependent upon current market conditions. Academic performance, skills, motivation, maturity, attitude and potential will determine whether a student is offered a job. It is the student’s responsibility to actively conduct a job search in addition to participation in the job search process operated by the co-op office. Once a student accepts a co-op job offer (verbally or written), his/her job search will end and access to co-op jobs will be removed for that term. Students that do not successfully obtain a co-op work term are expected to continue with their academic studies. The summer term is the exception to this rule. Students should also note that hiring priority is given to Canadian citizens for co-op positions in the Federal Government of Canada.

**Registering in Co-op Courses**

Students will be registered in a Co-op Work Term course while at work. The number of Co-op Work Term courses that a student is registered in is dependent upon the number of four-month work terms that a student accepts.

While on a co-op work term students may take a maximum of 0.5 credit throughout each four-month co-op work term. Courses must be scheduled outside of regular working hours.

Students must be registered as full-time before they begin their co-op job search (2.0 credits). All co-op work terms must be completed before the beginning of the final academic term. Students may not finish their degree on a co-op work term.

**Work Term Assessment and Evaluation**

To obtain a Satisfactory grade for the co-op work term students must have:

1. A satisfactory work term evaluation by the co-op employer;
2. A satisfactory grade on the work term report.

Students must submit a work term report at the completion of each four-month work term. Reports are due on the 16th of April, August, and December and students are notified of due dates through their Carleton email account.

Workplace performance will be assessed by the workplace supervisor. Should a student receive an unsatisfactory rating from their co-op employer, an investigation by the co-op program manager will be undertaken. An unsatisfactory employer evaluation does not preclude a student from achieving an overall satisfactory rating for the work term.

**Graduation with the Co-op Designation**

In order to graduate with the co-op designation, students must satisfy all requirements for their degree program in addition to the requirements according to each co-op program (i.e. successful completion of three or four work terms).

Note: Participation in the co-op option will add up to one additional year for a student to complete their degree program.

**Voluntary Withdrawal from the Co-op Option**

Students may withdraw from the co-op option of their degree program during a study term ONLY. Students at work may not withdraw from the work term or the co-op option until s/he has completed the requirements of the work term.

Students are eligible to continue in their regular academic program provided that they meet the academic standards required for continuation.

**Involuntary or Required Withdrawal from the Co-op Option**

Students may be required to withdraw from the co-op option of their degree program for one or any of the following reasons:

1. Failure to achieve a grade of SAT in COOP 1000
2. Failure to pay all co-op related fees
3. Failure to actively participate in the job search process
4. Failure to attend all interviews for positions to which the student has applied
5. Declining more than one job offer during the job search process
6. Continuing a job search after accepting a co-op position
7. Dismissal from a work term by the co-op employer
8. Leaving a work term without approval by the Co-op manager
9. Receipt of an unsatisfactory work term evaluation
10. Submission of an unsatisfactory work term report

Standing and Appeals
The Co-op and Career Services office administers the regulations and procedures that are applicable to all co-op program options. All instances of a student's failure during a work term or other issues directly related to their participation in the co-op option will be reported to the academic department.

Any decision made by the Co-op and Career Services office can be appealed via the normal appeal process within the University.

International Students
All International Students are required to possess a Co-op Work Permit issued by Immigration, Refugees and Citizenship Canada before they can begin working. It is illegal to work in Canada without the proper authorization. Students will be provided with a letter of support to accompany their application. Students must submit their application for their permit before being permitted to view and apply for jobs on the Co-op Services database. Confirmation of a position will not be approved until a student can confirm they have received their permit. Students are advised to discuss the application process and requirements with the International Student Services Office.

B.Sc. Honours Biology, Bioinformatics: Co-op Admission and Continuation Requirements
- Maintain full-time status in each study term (2.0 credits);
- Be eligible to work in Canada (for off-campus work);
- Have successfully completed COOP 1000 [0.0]

In addition to the following:
1. Completion of 5.0 or more credits at Carleton University;
2. Registered as a full-time student in the Bachelor of Science Honours degree program;
3. Obtained and maintained a major CGPA of 8.0 or higher and an overall CGPA of 6.50 or higher

B.Sc. Honours Biology and Bioinformatics students must successfully complete three (3) work terms to obtain the Co-op designation.

Work Term Course: BIOL 3999
Work/Study Pattern:

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
<th>Year 4</th>
<th>Year 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Term</td>
<td>Pattern</td>
<td>Term</td>
<td>Pattern</td>
<td>Term</td>
</tr>
<tr>
<td>Fall</td>
<td>S</td>
<td>Fall</td>
<td>S</td>
<td>Fall</td>
</tr>
<tr>
<td>Winter</td>
<td>S</td>
<td>Winter</td>
<td>S</td>
<td>Winter</td>
</tr>
<tr>
<td>Summer</td>
<td>**O/W</td>
<td>Summer</td>
<td>*W</td>
<td>Summer</td>
</tr>
</tbody>
</table>

Legend
S: Study
W: Work
O: Optional
* indicates recommended work study pattern
** student finds own employer for this work-term.

B.Sc. Regulations
The regulations presented in this section apply to all Bachelor of Science programs. In addition to the requirements presented here, students must satisfy the University regulations common to all undergraduate students including the process of Academic Performance Evaluation (see the Academic Regulations of the University section of this Calendar).

Breadth Requirement for the B.Sc.
Students in a Bachelor of Science program must present the following credits at graduation:
1. 2.0 credits in Science Continuation courses not in the major discipline; students completing a double major are considered to have completed this requirement providing they have 2.0 credits in science continuation courses in each of the two majors
2. 2.0 credits in courses outside of the faculties of Science and Engineering and Design (but may include NSCI 1000)

In most cases, the requirements for individual B.Sc. programs, as stated in this Calendar, contain these requirements, explicitly or implicitly.

Students admitted to B.Sc. programs by transfer from another institution must present at graduation (whether taken at Carleton or elsewhere):
1. 2.0 credits in courses outside of the faculties of Science and Engineering and Design (but may include NSCI 1000) if, on transfer, the student received credit for fewer than 10.0 credits.
2. 1.0 credit in courses outside of the faculties of Science and Engineering and Design (but may include NSCI 1000) if, on transfer, the student received credit for 10.0 or more credits.

Declared and Undeclared Students
Students who are registered in a program within the degree are called Declared students. Most students designate a program of study when they first apply for admission and so begin their studies as Declared students. Students may also choose to begin their studies within the B.Sc. degree without being registered in a program. These students are referred to as Undeclared students. The recommended course pattern for Undeclared students is provided in the Undeclared entry of the Programs section of this Calendar. Undeclared students normally must apply to enter a program before beginning their second year of study. The Science Student Success Centre (SSSC) provides Undeclared students guidance to the appropriate support services in making this decision.

Change of Program within the B.Sc. Degree
Students may transfer to a program within the B.Sc. degree if upon entry to the new program they would be in good academic standing.
Other applications for change of program will be considered on their merits; students may be accepted
in the new program in *Good Standing* or on Academic Warning.

Applications to declare or change their program within the B.Sc. Degree must be made online through Carleton Central by completing a Change of Program Elements (COPE) application form within the published deadlines. Acceptance into a program or into a program element or option is subject to any enrolment, and/or specific program, program element or option requirements as published in the relevant Calendar entry.

**Minors, Concentrations and Specializations**

Students may add a minor, concentration or specialization by completing a Change of Program Elements (COPE) application form online through Carleton Central. Acceptance into a minor, concentration or specialization requires that the student be in *Good Standing* and is subject to any specific requirements of the intended Minor, Concentration or Specialization as published in the relevant Calendar entry.

**Experimental Science Requirement**

Students in a B.Sc. degree program must present at graduation at least two full credits of experimental science chosen from two different departments or institutes from the list below:

<table>
<thead>
<tr>
<th>Approved Experimental Science Courses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Biochemistry</strong></td>
<td></td>
</tr>
<tr>
<td>BIOC 2200 [0.5] Cellular Biochemistry</td>
<td></td>
</tr>
<tr>
<td>BIOC 4001 [0.5] Methods in Biochemistry</td>
<td></td>
</tr>
<tr>
<td>BIOC 4201 [0.5] Advanced Cell Culture and Tissue Engineering</td>
<td></td>
</tr>
<tr>
<td><strong>Biology</strong></td>
<td></td>
</tr>
<tr>
<td>BIOL 1103 [0.5] Foundations of Biology I</td>
<td></td>
</tr>
<tr>
<td>BIOL 1104 [0.5] Foundations of Biology II</td>
<td></td>
</tr>
<tr>
<td>BIOL 2001 [0.5] Animals: Form and Function</td>
<td></td>
</tr>
<tr>
<td>BIOL 2002 [0.5] Plants: Form and Function</td>
<td></td>
</tr>
<tr>
<td>BIOL 2104 [0.5] Introductory Genetics</td>
<td></td>
</tr>
<tr>
<td>BIOL 2200 [0.5] Cellular Biochemistry</td>
<td></td>
</tr>
<tr>
<td>BIOL 2600 [0.5] Ecology</td>
<td></td>
</tr>
<tr>
<td><strong>Chemistry</strong></td>
<td></td>
</tr>
<tr>
<td>CHEM 1001 [0.5] General Chemistry I</td>
<td></td>
</tr>
<tr>
<td>CHEM 1002 [0.5] General Chemistry II</td>
<td></td>
</tr>
<tr>
<td>CHEM 1005 [0.5] Elementary Chemistry I</td>
<td></td>
</tr>
<tr>
<td>CHEM 1006 [0.5] Elementary Chemistry II</td>
<td></td>
</tr>
<tr>
<td>CHEM 2103 [0.5] Physical Chemistry I</td>
<td></td>
</tr>
<tr>
<td>CHEM 2203 [0.5] Organic Chemistry I</td>
<td></td>
</tr>
<tr>
<td>CHEM 2204 [0.5] Organic Chemistry II</td>
<td></td>
</tr>
<tr>
<td>CHEM 2302 [0.5] Analytical Chemistry I</td>
<td></td>
</tr>
<tr>
<td>CHEM 2303 [0.5] Analytical Chemistry II</td>
<td></td>
</tr>
<tr>
<td>CHEM 2800 [0.5] Foundations for Environmental Chemistry</td>
<td></td>
</tr>
<tr>
<td><strong>Earth Sciences</strong></td>
<td></td>
</tr>
<tr>
<td>ERTH 1006 [0.5] Exploring Planet Earth</td>
<td></td>
</tr>
<tr>
<td>ERTH 1009 [0.5] The Earth System Through Time</td>
<td></td>
</tr>
<tr>
<td>ERTH 2102 [0.5] Mineralogy to Petrology</td>
<td></td>
</tr>
<tr>
<td>ERTH 2404 [0.5] Engineering Geoscience</td>
<td></td>
</tr>
<tr>
<td>ERTH 2802 [0.5] Field Geology I</td>
<td></td>
</tr>
<tr>
<td>ERTH 3111 [0.5] Vertebrate Evolution: Mammals, Reptiles, and Birds</td>
<td></td>
</tr>
<tr>
<td>ERTH 3112 [0.5] Vertebrate Evolution: Fish and Amphibians</td>
<td></td>
</tr>
<tr>
<td>ERTH 3204 [0.5] Mineral Deposits</td>
<td></td>
</tr>
<tr>
<td>ERTH 3205 [0.5] Physical Hydrogeology</td>
<td></td>
</tr>
<tr>
<td>ERTH 3806 [0.5] Structural Geology</td>
<td></td>
</tr>
<tr>
<td><strong>Food Sciences</strong></td>
<td></td>
</tr>
<tr>
<td>FOOD 3001 [0.5] Food Chemistry</td>
<td></td>
</tr>
<tr>
<td>FOOD 3002 [0.5] Food Analysis</td>
<td></td>
</tr>
<tr>
<td>FOOD 3005 [0.5] Food Microbiology</td>
<td></td>
</tr>
<tr>
<td><strong>Geography</strong></td>
<td></td>
</tr>
<tr>
<td>GEGG 1010 [0.5] Global Environmental Systems</td>
<td></td>
</tr>
<tr>
<td>GEGG 3108 [0.5] Soil Properties</td>
<td></td>
</tr>
<tr>
<td><strong>Neuroscience</strong></td>
<td></td>
</tr>
<tr>
<td>NEUR 3206 [0.5] Sensory and Motor Neuroscience</td>
<td></td>
</tr>
<tr>
<td>NEUR 3207 [0.5] Systems Neuroscience</td>
<td></td>
</tr>
<tr>
<td>NEUR 4600 [0.5] Advanced Lab in Neuroanatomy</td>
<td></td>
</tr>
<tr>
<td><strong>Physics</strong></td>
<td></td>
</tr>
<tr>
<td>PHYS 1001 [0.5] Foundations of Physics I</td>
<td></td>
</tr>
<tr>
<td>PHYS 1002 [0.5] Foundations of Physics II</td>
<td></td>
</tr>
<tr>
<td>PHYS 1003 [0.5] Introductory Mechanics and Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>PHYS 1004 [0.5] Introductory Electromagnetism and Wave Motion</td>
<td></td>
</tr>
<tr>
<td>PHYS 1007 [0.5] Elementary University Physics I</td>
<td></td>
</tr>
<tr>
<td>PHYS 1008 [0.5] Elementary University Physics II</td>
<td></td>
</tr>
<tr>
<td>PHYS 2202 [0.5] Wave Motion and Optics</td>
<td></td>
</tr>
<tr>
<td>PHYS 2604 [0.5] Modern Physics I</td>
<td></td>
</tr>
<tr>
<td>PHYS 3007 [0.5] Third Year Physics Laboratory: Selected Experiments and Seminars</td>
<td></td>
</tr>
<tr>
<td>PHYS 3606 [0.5] Modern Physics II</td>
<td></td>
</tr>
<tr>
<td>PHYS 3608 [0.5] Modern Applied Physics</td>
<td></td>
</tr>
</tbody>
</table>

**Course Categories for B.Sc. Programs**

<table>
<thead>
<tr>
<th>Science Geography Courses</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GEGG 1010 [0.5] Global Environmental Systems</td>
<td></td>
</tr>
<tr>
<td>GEGG 2006 [0.5] Introduction to Quantitative Research</td>
<td></td>
</tr>
<tr>
<td>GEGG 2013 [0.5] Weather and Water</td>
<td></td>
</tr>
<tr>
<td>GEGG 2014 [0.5] The Earth's Surface</td>
<td></td>
</tr>
<tr>
<td>GEGG 3003 [0.5] Quantitative Geography</td>
<td></td>
</tr>
<tr>
<td>GEGG 3010 [0.5] Field Methods in Physical Geography</td>
<td></td>
</tr>
<tr>
<td>GEGG 3102 [0.5] Geomorphology</td>
<td></td>
</tr>
<tr>
<td>GEGG 3103 [0.5] Watershed Hydrology</td>
<td></td>
</tr>
<tr>
<td>GEGG 3104 [0.5] Principles of Biogeography</td>
<td></td>
</tr>
<tr>
<td>GEGG 3105 [0.5] Climate and Atmospheric Change</td>
<td></td>
</tr>
<tr>
<td>GEGG 3106 [0.5] Aquatic Science and Management</td>
<td></td>
</tr>
<tr>
<td>GEGG 3108 [0.5] Soil Properties</td>
<td></td>
</tr>
<tr>
<td>GEGG 4000 [0.5] Field Studies</td>
<td></td>
</tr>
<tr>
<td>GEGG 4005 [0.5] Directed Studies in Geography</td>
<td></td>
</tr>
<tr>
<td>GEGG 4013 [0.5] Cold Region Hydrology</td>
<td></td>
</tr>
<tr>
<td>GEGG 4017 [0.5] Global Biogeochemical Cycles</td>
<td></td>
</tr>
<tr>
<td>GEGG 4101 [0.5] Two Million Years of Environmental Change</td>
<td></td>
</tr>
<tr>
<td>GEGG 4103 [0.5] Water Resources Engineering</td>
<td></td>
</tr>
</tbody>
</table>
Science Faculty Electives are courses at the 1000-4000 level chosen from:

- **BIOC** (Biochemistry)
- **BIOL** (Biology) Biology & Biochemistry students may use BIOL 1010 and BIOL 2005 only as free electives
- **CHEM** (Chemistry) except CHEM 1003, CHEM 1004 and CHEM 1007
- **COMP** (Computer Science) except COMP 1001
- **ERTH** (Earth Sciences) except ERTH 1010, ERTH 1011 and ERTH 2415. Earth Sciences students may use ERTH 2401, ERTH 2402, and ERTH 2403 only as free electives.
- **Engineering**
  - **ENSC** 2001
- **FOOD** (Food Science and Nutrition)
- **GEOM** (Geomatics)
- **HLTH** (Health Science)
- **ISAP** (Interdisciplinary Science Practice)
- **MATH** (Mathematics)
- **NEUR** (Neuroscience)
- **PHYS** (Physics) except PHYS 1901, PHYS 1902, PHYS 1905, PHYS 2903
- **Science Geography** (see list above)
- **Science Psychology** (see list above)
- **STAT** (Statistics)
- **TSES** (Technology, Society, Environment) Biology students may use these courses only as free electives.

Advanced Science Faculty Electives

Advanced Science Faculty Electives are courses at the 2000-4000 level chosen from the Science Faculty Electives list above.

Approved Courses Outside the Faculties of Science and Engineering and Design (may include NSCI 1000)

All courses offered by the Faculty of Arts and Social Sciences, the Faculty of Public Affairs, and the Sprott School of Business are approved as Arts or Social Sciences courses EXCEPT FOR: All Science Geography courses (see list above), all Geomatics (GEOM) courses, all Science Psychology courses (see list above). NSCI 1000 may be used as an Approved Course Outside the Faculties of Science and Engineering and Design.

Free Electives

Any course is allowable as a Free Elective providing it is not prohibited (see below). Students are expected to comply with prerequisite requirements and enrolment restrictions for all courses as published in this Calendar.

Courses Allowable Only as Free Electives in any B.Sc. Program

- **BIOE 4810** [0.5] Education Research in Biology
- **CHEM 1003** [0.5] The Chemistry of Food, Health and Drugs
- **CHEM 1004** [0.5] Drugs and the Human Body
- **CHEM 1007** [0.5] Chemistry of Art and Artifacts
- **ERTH 1010** [0.5] Our Dynamic Planet Earth
- **ERTH 1011** [0.5] Evolution of the Earth
- **ERTH 2415** [0.5] Natural Disasters
- **ISCI 1001** [0.5] Introduction to the Environment
- **ISCI 2000** [0.5] Natural Laws
- **ISCI 2002** [0.5] Human Impacts on the Environment
- **MATH 0107** [0.5] Algebra and Geometry
- **PHYS 1901** [0.5] Planetary Astronomy
- **PHYS 1902** [0.5] From Our Star to the Cosmos
PHYS 1905 [0.5]  Physics Behind Everyday Life
PHYS 2903 [0.5]  Physics Towards the Future

Prohibited Courses
The following courses are not acceptable for credit in any B.Sc. program:

COMP 1001 [0.5]  Introduction to Computational Thinking for Arts and Social Science Students
MATH 0005 [0.5]  Precalculus: Functions and Graphs
MATH 0006 [0.5]  Precalculus: Trigonometric Functions and Complex Numbers
MATH 1009 [0.5]  Mathematics for Business
MATH 1119 [0.5]  Linear Algebra: with Applications to Business
MATH 1401 [0.5]  Elementary Mathematics for Economics I
MATH 1402 [0.5]  Elementary Mathematics for Economics II

B.A. Regulations
The regulations presented below apply to all Bachelor of Arts programs. In addition to the requirements presented here, students must satisfy the University regulations common to all undergraduate students including the process of Academic Performance Evaluation (consult the Academic Regulations of the University section of this Calendar).

First-Year Seminars
B.A. degree students are strongly encouraged to include a First-Year Seminar (FYSM) during their first 4.0 credits of registration. Students are limited to 1.0 credit in FYSM and can only register in a FYSM while they have first-year standing in their B.A. program. Students who have completed the Enriched Support Program (ESP) or who are required to take a minimum of one English as a Second Language (ESLA) credit are not permitted to register in a FYSM.

Breadth Requirement
Among the credits presented at graduation, students in both the B.A. and the B.A. Honours degrees and B.Co.M.S. are required to include 3.0 breadth credits, including 1.0 credit from each of three of the four Breadth Areas identified below. Credits that fulfill requirements in the Major, Minor, Concentration or Specialization may be used to fulfill the Breadth Requirement.

Students admitted with a completed university degree are exempt from breadth requirements.

Students in the following interdisciplinary programs are exempt from the B.A. breadth requirement.

• African Studies
• Criminology and Criminal Justice
• Environmental Studies
• Human Rights
• Human Rights and Social Justice

Breadth Area 1: Culture and Communication
American Sign Language, Art History, Art and Culture, Communication and Media Studies, Comparative Literary Studies, Digital Humanities, English, Film Studies, French, Journalism, Media Production and Design, Music, Performance in Public Sphere, and Languages (Arabic, English as a Second Language, German, Greek, Hebrew, Indigenous Languages, Italian, Japanese, Korean, Latin, Mandarin, Portuguese, Russian, Spanish)

Subject codes: ARAB, ARTH, ASLA, CHIN, CLST, COMS, DIGH, ENGL, ESLA, FILM, FINS, FREN, GERM, GREK, HEBR, ITAL, JAPA, JOUR, KORE, LANG, LATN, MPAD, MUSI, PIPS, PORT, RUSS, SPAN

Breadth Area 2: Humanities

Subject codes: AFRI, ALDS, ARCY, CDNS, CHCV, CRST, DBST, DIST, EACH, EURRE, HUMR, HUMS, INDG, LACS, LING, MEMS, PHIL, RELI, SAST, SXST, WGST

Breadth Area 3: Science, Engineering, and Design

Subject codes: AERO, ARCC, ARCH, ARCN, ARCS, ARCU, BIOC, BIOL, BIT, CHEM, CIVE, CMPS, COMP, ECOR, ELEC, ENSC, ENVE, ERTH, FOOD, HLTH, IDES, IMD, IRM, ISCI, ISCS, ISYS, ITEC, MAEE, MATH, MECH, NET, NEUR, NSCI, OSS, PHYS, PLT, SREE, STAT, SYSC, TSES

Breadth Area 4: Social Sciences
Anthropology, Business, Comparative Science, Criminology and Criminal Justice, Economics, Environmental Studies, Geography, Geomatics, Global and International Studies, Global Politics, Interdisciplinary Public Affairs, International Affairs, Law, Migration and Diaspora Studies, Political Management, Political Science, Psychology, Public Administration, Public Affairs and Policy Management, Social Work, Sociology/Anthropology, Sociology

Subject codes: ANTH, BUSI, CGSC, CRCJ, Econ, ENST, GEOG, GEOM, GINS, GPOL, INAF, IPAF, LAWS, MGDS, PADM, PAPM, POLM, PSCI, PSYC, SOCI, SOWK

Declared and Undeclared Students
Degree students are considered "Undeclared" if they have been admitted to a degree but have not yet selected and been accepted into a program within that degree. The status "Undeclared" is available only in the B.A.
and B.Sc. degrees. See the Open Studies program section of this Calendar for recommended registration information. Normally, Undeclared students are required to be eligible to enter a program within their degree before reaching second year standing. Undeclared students should consult Academic Advising Centre for guidance in planning their studies prior to registration.

Change of Program Within the B.A. Degree
Students may transfer to a program within the B.A. degree, if upon entry to the new program they would be in Good Standing. Other applications for change of program will be considered on their merits; students may be admitted to the new program in Good Standing or on Academic Warning. Students may apply to declare or change their program within the B.A. Degree at the Registrar's Office according to the published deadlines. Acceptance into a program or into a program element or option is subject to any enrollment limitations, specific program, program element or option requirements, as published in the relevant Calendar entry.

Minors, Concentrations and Specializations
Students may apply to the Registrar's Office to be admitted to a minor, concentration or specialization during their first or subsequent years of study. Acceptance into a minor, concentration or specialization is subject to any specific requirements of the intended Minor, Concentration or Specialization as published in the relevant Calendar entry. Acceptance into a Concentration or Specialization requires that the student be in Good Standing.

Mention : Français
Students registered in certain B.A. programs may earn the notation Mention : Français by completing part of their requirements in French and by demonstrating a knowledge of the history and culture of French Canada. The general requirements are listed below. For more specific details consult the departmental program entries.

Students in a B.A. Honours program must present:
1. 1.0 credit in French language;
2. 1.0 credit devoted to the history and culture of French Canada;
3. 1.0 credit at the 2000- or 3000-level and 1.0 credit at the 4000-level in the Honours discipline taken in French.

Students in a B.A. program must present:
1. 1.0 credit in advanced French;
2. 1.0 credit devoted to the history and culture of French Canada;
3. 1.0 credit at the 2000- or 3000-level in the Major discipline taken in French.

Students in Combined Honours programs must fulfil the Mention : Français requirement in both disciplines.

Courses taught in French (Item 3, above) may be taken at Carleton, at the University of Ottawa on the Exchange Agreement, or at a francophone university on a Letter of Permission. Students planning to take courses on exchange or on a Letter of Permission should take care to note of the residence requirement for a minimum number of Carleton courses in their programs. Consult the Academic Regulations of the University section of this Calendar for information regarding study on Exchange or Letter of Permission.

Degrees
• B.Sc. (Honours)
• B.Sc. (Major)
• B.Sc.

Admission Requirements
B. Sc. Honours Program
First Year
The Ontario Secondary School Diploma (OSSD) or equivalent including a minimum of six 4U or M courses. For most programs including Biochemistry, Bioinformatics, Biotechnology, Chemistry, Combined Honours in Biology and Physics, Chemistry and Physics, Computational Biochemistry, Food Science, Nanoscience, Neuroscience, Neuroscience and Mental Health, and Psychology, the six 4U or M courses must include Advanced Functions and two of Biology, Chemistry, Earth and Space Sciences or Physics. (Calculus and Vectors is strongly recommended).

Specific Honours Admission Requirements
For the Honours programs in Earth Sciences, Environmental Science, Geomatics, Interdisciplinary Science and Practice, and Physical Geography, Calculus and Vectors may be substituted for Advanced Functions.

For the Honours programs in Physics and Applied Physics and for double Honours in Mathematics and Physics, Calculus and Vectors is required in addition to Advanced Functions and one of 4U Physics Chemistry, Biology, or Earth and Space Sciences. For all programs in Physics, 4U Physics is strongly recommended.

For the Combined Honours program in Chemistry and Computer Science, 4U Chemistry and Calculus and Vectors are strongly recommended.

For Honours in Psychology, a 4U course in English is recommended.

For Honours in Environmental Science, a 4U course in Biology and Chemistry is recommended.

Advanced Standing
For entry to an Honours program after the completion of 5.0 included credits, a student must have a major CGPA of 5.50 or higher, an overall CGPA of 4.50 or higher and the recommendation of the Honours department or committee. A student beginning the final 10.0 credits towards an Honours degree must present a major CGPA of 6.00 or higher, an overall CGPA of 5.00 or higher and the recommendation of the Honours department or committee. A student beginning the final 5.0 credits towards an Honours degree must present a major CGPA of 6.50 or higher and an overall CGPA of 5.00 or higher, as calculated for graduation. Advanced standing will be granted for studies undertaken elsewhere when these
are recognized as the equivalent of subjects offered at Carleton University.

**B.Sc. Major Program**

**B.Sc. Program**

**First Year**
The Ontario Secondary School Diploma (OSSD) or equivalent including a minimum of six 4U or M courses. The six 4U or M courses must include Advanced Functions and two of Calculus and Vectors, Biology, Chemistry, Earth and Space Science or Physics (Calculus and Vectors is strongly recommended). For the B.Sc. Major in Physics, 4U Physics is strongly recommended. Equivalent courses may be substituted between the old and new Ontario mathematics curriculum.

**Advanced Standing**
For entry to a B.Sc. or B.Sc. Major program after the completion of 5.0 included credits, a student must have a major and core CGPA of 3.50 or higher and an overall CGPA of 3.50 or higher. A student beginning the final 5.0 credits towards a B.Sc. or B.Sc. Major degree must present a major and core CGPA of 4.00 or higher and an overall CGPA of 4.00 or higher, as calculated for graduation. Advanced standing will be granted for studies undertaken elsewhere when these are recognized as the equivalent of subjects offered at Carleton University.

**Co-op Option**

**Direct Admission to the First Year of the Co-op Option**
Applicants must:
1. meet the required overall admission cut-off average and prerequisite course average. These averages may be higher than the stated minimum requirements;
2. be registered as a full-time student in the Bachelor of Science Honours program;
3. be eligible to work in Canada (for off-campus work placements).

Note that meeting the above requirements only establishes eligibility for admission to the program. The prevailing job market may limit enrolment in the co-op option.

Note: continuation requirements for students previously admitted to the co-op option and admission requirements for the co-op option after beginning the program are described in the Co-operative Education Regulations section of this Calendar.

**Admission Requirements**

**Degrees**
- Bachelor of Arts (B.A.)(Honours)
- Bachelor of Arts (B.A.)

**First Year**
*For B.A. and B.A. (Honours)*
The Ontario Secondary School Diploma (OSSD) or equivalent including a minimum of six 4U or M courses. The six 4U or M courses must include a 4U course in English (or anglais). For applicants whose first language is not English, the requirement of English can also be met under the conditions outlined in the section “English Language Requirements” in the Admissions Requirements and Procedures section of this Calendar.

The cut-off average for admission will be set annually and will normally be above the minimum requirement. Applicants falling slightly below the cut-off average will be considered on an individual basis to determine whether there are special circumstances that would permit their admission. Students who feel that their high school grade average does not reflect their potential may apply to the Enriched Support Program (see the Enriched Support Program section of this Calendar).

**Biology**
For the major in Biology in the B.A. program, in addition to the 4U English, a 4U course in Chemistry is required. Advanced Functions and Calculus and Vectors are recommended.

**Advanced Standing**

**B.A. and B.A. (Honours) Program**
Applications for admission to the second or subsequent years will be assessed on their merits. Advanced standing will be granted only for those courses that are determined to be appropriate.

**Direct Admission to the First Year of the Co-op Option**
Co-op is available for the following Majors in the B.A. (Honours) degree: Anthropology, English, Environmental Studies, European, Russian, and Eurasian Studies, French, Geography, Geography with a Concentration in Physical Geography, Geomatics, History, Law (Business Law), Law (Law, Policy and Government), Political Science, Psychology, Sociology.

Applicants must:
1. meet the required overall admission cut-off average and prerequisite course average. These averages may be higher than the stated minimum requirements;
2. be registered as a full-time student in the Bachelor of Arts Honours with one of the majors listed above;
3. be eligible to work in Canada (for off-campus work placements).

Meeting the above requirements only establishes eligibility for admission to the program. The prevailing job market may limit enrolment in the co-op option. Students should also note that hiring priority is given to Canadian citizens for co-op positions in the Public Service Commission.

Note: continuation requirements for students previously admitted to the co-op option and admission requirements for the co-op option after beginning the program are described in the Co-operative Education Regulations section of this Calendar.
Biology (BIOL) Courses

BIOL 1010 [0.5 credit]
Biotechnology and Society
A course for students interested in the science behind recent advances in biotechnology. The different ways in which biotechnology is being applied in agriculture, health care, and the environment will be examined. Precludes additional credit for Credit will not be given if taken concurrently with, or after BIOL 2200 or BIOC 2200 or BIOL 2201. Students in Biology and Biochemistry programs may only take this course as a free elective. Lectures three hours a week.

BIOL 1103 [0.5 credit]
Foundations of Biology I
A research-oriented course focusing on the scientific process of biological exploration at the cellular level. Topics include cell organization, metabolism, genetics, and reproduction. Includes: Experiential Learning Activity Precludes additional credit for BIOL 1003 (no longer offered). Prerequisite(s): Ontario 4U/M in Biology (or equivalent), or Ontario 4U/M in Chemistry (or equivalent). Lectures three hours a week, laboratory or tutorial three hours a week.

BIOL 1104 [0.5 credit]
Foundations of Biology II
A research-oriented course focusing on the scientific process of biological exploration at the macroscale. Topics include evolution, diversity of life, and ecological relationships. Includes: Experiential Learning Activity Precludes additional credit for BIOL 1004 (no longer offered). Prerequisite(s): Ontario 4U/M in Biology (or equivalent) or BIOL 1103. Lectures three hours a week, laboratory or tutorial three hours a week.

BIOL 1105 [0.5 credit]
Biological Methods, Analysis and Interpretation
Formulation of biological research questions, development of hypotheses and predictions, design of experiments, collection and analysis of data, interpretation and presentation of results. Lectures three hours a week.

BIOL 1902 [0.5 credit]
Natural History
A course designed primarily for students in non-biology programs to investigate the natural history of plants and animals, and the communities in which they occur. Particular attention is paid to the Ottawa region, but appropriate examples from other locales are also included. Lectures three hours a week.

BIOL 2001 [0.5 credit]
Animals: Form and Function
An introduction to the diverse structures of animals (both invertebrates and vertebrates) in relationship to their functions, discussed within an evolutionary framework. Includes: Experiential Learning Activity Prerequisite(s): (BIOL 1003 and BIOL 1004) or (BIOL 1103 and BIOL 1104) or permission of the Department. Lectures three hours a week, laboratory or tutorial three hours a week.

BIOL 2002 [0.5 credit]
Plants: Form and Function
An introduction to the structure and development of higher plants (at cellular, morphological and organism levels) discussed in relation to their function. Includes: Experiential Learning Activity Prerequisite(s): (BIOL 1003 and BIOL 1004) or (BIOL 1103 and BIOL 1104) or permission of the Department. Lectures three hours a week, laboratory or tutorial three hours a week.

BIOL 2005 [0.5 credit]
Human Biology
A course for non-specialists interested in how the human body works. Topics will include biological molecules, cells, genetics, and various organ systems. Examples will be used to connect concepts taught in the course with general knowledge of human health and disease. Prerequisite(s): BIOL 1003 or BIOL 1103 and (CHEM 1001 and CHEM 1002) or (CHEM 1005 and CHEM 1006) or permission of the Department. Students in Biology and Biochemistry programs may only take this course as a free elective. Lectures three hours a week.

BIOL 2104 [0.5 credit]
Introductory Genetics
Lecture/laboratory course on the mechanisms of inheritance and the nature of gene structure, composition and function, introducing both classical Mendelian genetics and modern molecular genetics. It is strongly recommended that this course be taken by Biology majors in their second year of study. Includes: Experiential Learning Activity Precludes additional credit for BIOL 2106 (no longer offered) and BIOL 2107. Credit for BIOL 2106 will only be given if taken before BIOL 2104. Prerequisite(s): (BIOL 1003 and BIOL 1004) or (BIOL 1103 and BIOL 1104) or permission of the Department. Lectures three hours a week, laboratory or tutorial three hours a week.
BIOL 2107 [0.5 credit]
**Fundamentals of Genetics**
Mechanisms of inheritance and the nature of gene structure, composition and function, introducing both classical Mendelian genetics and modern molecular genetics.
Precludes additional credit for BIOL 2104 and BIOL 2106 (no longer offered).
Prerequisite(s): (BIOL 1003 and BIOL 1004) or (BIOL 1103 and BIOL 1104) or permission of the Department.
Lectures three hours a week.

BIOL 2200 [0.5 credit]
**Cellular Biochemistry**
Cellular functions and their interrelationships. Introduction to thermodynamics, membrane structure and function, transport mechanisms, basic metabolic pathways, energy production and utilization, communications between cells. It is strongly recommended that Biology Majors and Honours students take this course in their second year of study.
Includes: Experiential Learning Activity
Also listed as BIOC 2200.
Precludes additional credit for BIOL 2201.
Prerequisite(s): (BIOL 1003 and BIOL 1004) or (BIOL 1103 and BIOL 1104), (CHEM 1001 and CHEM 1002) or (CHEM 1005 and CHEM 1006), or permission of the Department.
Lectures three hours a week, laboratory or tutorial four hours a week.

BIOL 2201 [0.5 credit]
**Cell Biology and Biochemistry**
A study of the molecular, metabolic and structural organization of cells in relation to function. This course is recommended for students not taking upper year Biology laboratory courses for which BIOL/BIOC laboratories are prerequisites.
Precludes additional credit for BIOL 2200, BIOC 2200.
Prerequisite(s): (BIOL 1003 or BIOL 1103) and (CHEM 1002 or CHEM 1006), or permission of the Department.
Lectures three hours a week.

BIOL 2301 [0.5 credit]
**Biotechnology I**
An introductory course on the science, technology, entrepreneurial skills and business considerations related to biotechnology. The course will survey broadly across the disciplines of Biology, including applications in agriculture, health, environment and industry.
Includes: Experiential Learning Activity
Prerequisite(s): (BIOL 1003 and BIOL 1004) or (BIOL 1103 and BIOL 1104) or permission of the department.
Lectures and workshops three hours a week

BIOL 2303 [0.5 credit]
**Microbiology**
The biology of the bacteria, Archaea, Viruses and Protozoans, from the fundamentals of cell chemistry, molecular biology, structure and function, to their involvement in ecological and industrial processes and human disease.
Also listed as ENVE 2002.
Prerequisite(s): BIOL 1003 or BIOL 1103.
Lectures three hours a week.

BIOL 2600 [0.5 credit]
**Ecology**
The scientific study of interactions of living organisms and their environment, and how these affect the distribution and abundance of life. Topics include energy transformation and flow, nutrient cycling, population and community dynamics, human impacts on ecosystems, conservation issues. Laboratory includes field and computer exercises.
Includes: Experiential Learning Activity
Prerequisite(s): (BIOL 1003 and BIOL 1004) or (BIOL 1103 and BIOL 1104), or permission of the Department.
Lectures three hours a week, laboratory or tutorial four hours a week.

BIOL 2903 [0.5 credit]
**Natural History and Ecology of Ontario**
Introduction to the remarkable diversity and ecological relationships of Ontario's flora and fauna, which are explored in a habitat context.
Precludes additional credit for BIOL 1903 (no longer offered).
Prerequisite(s): BIOL 1004 or BIOL 1104 or BIOL 1902.
Lectures three hours a week.

BIOL 3004 [0.5 credit]
**Insect Diversity**
Introductory course dealing with the taxonomic diversity, anatomy, behavior and physiology of insects, as well as their impacts on ecosystems, agriculture and animal and human health.
Includes: Experiential Learning Activity
Precludes additional credit for BIOL 4601.
Prerequisite(s): BIOL 2001.
Lectures three hours a week.

BIOL 3008 [0.5 credit]
**Bioinformatics**
A practical exploration in the application of information technology to biochemistry and molecular biology. Insight into biological knowledge discovery via molecular structure and function prediction, comparative genomics and biological information management.
Includes: Experiential Learning Activity
Also listed as BIOC 3008, COMP 3308.
Prerequisite(s): BIOC 2200 or BIOL 2200, or permission of the Department.
Lectures two hours a week, computer workshop three hours a week.
BIOL 3102 [0.5 credit]
Mycology
This introductory course will cover the morphology, physiology, life cycles, evolution, ecology and biotechnology of the fungi.
Includes: Experiential Learning Activity
Prerequisite(s): BIOL 2104 or BIOL 2107.
Lectures three hours a week.

BIOL 3104 [0.5 credit]
Molecular Genetics
A lecture course dealing with modern advances in molecular genetics.
Prerequisite(s): BIOL 2104 or BIOL 2107 or permission of the Department.
Lectures three hours a week.

BIOL 3111 [0.5 credit]
Vertebrate Evolution: Mammals, Reptiles, and Birds
Evolution of mammals, reptiles and birds. Emphasis on surveying amniote diversity, and the origin of key amniote transformations, as evidenced by the fossil record.
Includes: Experiential Learning Activity
Also listed as ERTH 3111.
Prerequisite(s): BIOL 2001 or ERTH 1009, or permission of the department.
Lectures two hours a week and a laboratory three hours a week.

BIOL 3112 [0.5 credit]
Vertebrate Evolution: Fish and Amphibians
Evolution of fish and amphibians. Emphasis on surveying fish and amphibian diversity, and the origin of key transformations of these groups, as evidenced by the fossil record.
Includes: Experiential Learning Activity
Also listed as ERTH 3112.
Prerequisite(s): BIOL 2001 or ERTH 1009, or permission of the department.
Lectures two hours a week and a laboratory three hours a week.

BIOL 3201 [0.5 credit]
Cell Biology
A lecture and laboratory course on the structure, composition, and function of eukaryotic cells.
Includes: Experiential Learning Activity
Prerequisite(s): BIOL 2104 and BIOL 2200/BIOC 2200, or permission of the Department.
Lectures three hours a week, laboratory four hours a week.

BIOL 3202 [0.5 credit]
Principles of Developmental Biology
Introduction to the underlying principles and mechanisms governing development in multicellular animals and plants. Differentiation, growth, morphogenesis, and patterning will be examined at the organismal, cellular, and molecular levels to provide a balanced view of developmental phenomena in key model organisms.
Prerequisite(s): BIOL 2104 or BIOL 2107 and one of BIOL 2001 or BIOL 2002, or permission of the Department.
Lectures three hours a week.

BIOL 3205 [0.5 credit]
Plant Biochemistry and Physiology
A lecture and laboratory course consisting of selected topics in metabolism and physiology of plants, including photosynthesis, nutrient uptake and transport, intermediary and secondary metabolism, germination, growth and development.
Includes: Experiential Learning Activity
Prerequisite(s): BIOL 2002 and BIOL 2200/BIOC 2200, or permission of the Department.
Lectures three hours a week, laboratory four hours a week.

BIOL 3301 [0.5 credit]
Biotechnology II
An interdisciplinary course on interactions between science, invention and innovation in biotechnology. Case studies related to regional biotechnology opportunities; social and ethical issues impacting biotechnology.
Includes: Experiential Learning Activity
Prerequisite(s): BIOL 2301, BIOL 2104, and BIOL 2200/BIOC 2200 or permission of the Department.
Lectures and laboratory/workshops three hours a week.

BIOL 3303 [0.5 credit]
Experimental Microbiology
Intensive training in laboratory techniques in microbiology, using bacteria and other microorganisms to demonstrate processes of cell growth, metabolism, gene expression, rapid evolution, gene transfer, microbial community dynamics and interactions with other organisms.
Includes: Experiential Learning Activity
Prerequisite(s): BIOL 2104, BIOL 2200/BIOC 2200 and BIOL 2303, or permission of the Department.
Lecture/tutorial one and a half hours a week, laboratory four hours a week.

BIOL 3305 [0.5 credit]
Human and Comparative Physiology
The properties of physiological systems and components of humans and other animals with an emphasis on physical and chemical bases.
Includes: Experiential Learning Activity
Precludes additional credit for BIOL 3306.
Prerequisite(s): BIOL 2200/BIOC 2200 and BIOL 2001. A credit in PHYS at the 1000-level is strongly recommended.
Lectures three hours a week, laboratory four hours a week.
BIOL 3306 [0.5 credit]
Human Anatomy and Physiology
The anatomy and physiology of the neuromuscular, cardiovascular, respiratory, and excretory systems of humans with comparison to other animals.
Includes: Experiential Learning Activity
Preludes additional credit for BIOL 3305.
Prerequisite(s): (BIOL 1003 and BIOL 1004) or (BIOL 1103 and BIOL 1104), and (CHEM 1001 and CHEM 1002) or (CHEM 1005 and CHEM 1006), and third year standing.
Lectures three hours per week.

BIOL 3307 [0.5 credit]
Advanced Human Anatomy and Physiology
The anatomy and physiology of the endocrine, skeletal, digestive, immunological, and reproductive systems, with additional emphasis on the embryological origins of the major physiological systems.
Includes: Experiential Learning Activity
Prerequisite(s): BIOL 3305 or BIOL 3306.
Lectures three hours per week, workshop or laboratory four hours per week.

BIOL 3501 [0.5 credit]
Biomechanics
Properties of muscles, tendons, bones, joints and the co-ordinated use of these structures. Human and other animal locomotion and fitness, bird flight, especially the soaring of the vulture and the albatross, and animal migration are covered in detail.
Includes: Experiential Learning Activity
Prerequisite(s): (BIOL 1003 and BIOL 1004) or (BIOL 1103 and BIOL 1104).
Lectures three hours a week, workshop two hours a week.

BIOL 3601 [0.5 credit]
Ecosystems and Environmental Change
Exploration of the unique contribution of the ecosystem approach to ecology, and of early key literature in ecosystem ecology through to current work on global environmental change.
Includes: Experiential Learning Activity
Prerequisite(s): BIOL 2600.
Lectures three hours a week, laboratory four hours a week in six sessions.

BIOL 3602 [0.5 credit]
Conservation Biology
The science of biology as applied to the problem of maintaining species diversity. Topics include: history of conservation biology, valuation of species, indices of biodiversity, extinction, conservation genetics, conservation planning in parks and reserves, landscape ecology and case studies of conservation problems.
Includes: Experiential Learning Activity
Prerequisite(s): BIOL 2600 or permission of the Department.
Lectures three hours a week and laboratory/workshop three hours a week.

BIOL 3604 [0.5 credit]
Statistics for Biologists
Introduction to the analysis of biological data. Students analyze real biological data sets in weekly laboratory sessions. Methods introduced include simple linear, polynomial, and multiple regression analysis, analysis of variance, nonparametric tests, tests of independence and logistic regression analysis.
Includes: Experiential Learning Activity
Prerequisite(s): BIOL 1105 or STAT 2507.
Lectures one and one-half hours and laboratory two and one-half hours a week.

BIOL 3605 [0.5 credit]
Field Course I
An intensive study of living organisms under natural conditions. Credit is based on two weeks of full-time fieldwork with attendant assignments. Transportation and room and board costs are borne by the student. Ontario Universities Program in Field Biology; see offered modules for specific prerequisites.
Includes: Experiential Learning Activity
Also listed as NEUR 3203, for animal behaviour modules only.
Prerequisite(s): at least one course in BIOL beyond the 1000-level and written permission of the Department.
Students may take both BIOL 3605 and BIOL 3606 for credit, but neither can be used to repeat a particular module.
All day, approximately six days a week.

BIOL 3606 [0.5 credit]
Field Course II
An intensive study of living organisms under natural conditions. Credit is based on two weeks of full-time fieldwork with attendant assignments. Transportation and room and board costs are borne by the student. Ontario Universities Program in Field Biology; see offered modules for specific prerequisites.
Includes: Experiential Learning Activity
Prerequisite(s): at least one course in BIOL beyond the 1000-level and written permission of the Department.
Students may take both BIOL 3605 and BIOL 3606 for credit, but neither can be used to repeat a particular module.
All day, approximately six days a week.

BIOL 3608 [0.5 credit]
Principles of Biogeography
Contemporary and past controls on distribution of plants and animals at global, regional and local scales; significance of these distributions.
Includes: Experiential Learning Activity
Also listed as GEOG 3104.
Prerequisite(s): BIOL 2600 or GEOG 1010 or permission of the Department.
Lectures, laboratory, and fieldwork five hours a week.
BIOL 3609 [0.5 credit]  
**Evolutionary Concepts**  
Evolution is the change in population properties across generations. Genetic variation, mutation, selection, drift, gene flow, genome evolution, speciation, development, biodiversity, fossils, and macro-evolution.  
Prerequisite(s): BIOL 2104 or BIOL 2107 or permission of the instructor.  
Lectures three hours a week.

BIOL 3611 [0.5 credit]  
**Evolutionary Ecology**  
The term “adaptation” is meaningful only with respect to an ecological context. Ecological contexts lead to evolutionary outcomes such as diverse mating systems, ageing, sexual reproduction, sexual dimorphism, geographic variation, phenotypic plasticity, and diverse life histories.  
Includes: Experiential Learning Activity  
Prerequisite(s): BIOL 2600.  
Lectures three hours a week; one field trip.

BIOL 3612 [0.5 credit]  
**Computational Methods in Ecology and Evolution**  
Introduction to the development and use of computer programs to address biological problems. Topics include the development of programs to analyse ecological data, models of population dynamics, deterministic chaos, cellular automata, simulations of foraging behaviour and evolutionary computation.  
Includes: Experiential Learning Activity  
Prerequisite(s): BIOL 2600 or permission of the Department.  
Lectures two hours per week, workshop three hours per week.

BIOL 3801 [0.5 credit]  
**Plants and Herbivores**  
Exploration of the chemical, physiological, ecological and evolutionary interactions that underlie the relationship between plants and their insect herbivores.  
Prerequisite(s): BIOL 2001 and BIOL 2002.  
Lectures/seminars three hours a week.

BIOL 3802 [0.5 credit]  
**Animal Behaviour**  
Advanced study of animal behaviour including the environmental, genetic, and neural influences on behaviour. Topics such as predator-prey interactions, mating behaviour, migration, parental care and social interactions are interpreted in an evolutionary context.  
Prerequisite(s): BIOL 2001 or BIOL 2600 or permission of the Department.  
Lectures and workshop/tutorials three hours a week.

BIOL 3804 [0.5 credit]  
**Social Evolution**  
Diversity in social behaviour from evolutionary and ecological perspectives. Topics include ecological determinants of social living, social networks, social foraging, inclusive fitness, kin selection, altruism, cooperation, and mating systems and strategies.  
Prerequisite(s): BIOL 2001 and BIOL 2600, or permission of the Department.  
Lectures three hours a week.

BIOL 3901 [0.5 credit]  
**Research Proposal**  
The development of a competitive research proposal in consultation with an advisor.  
Includes: Experiential Learning Activity  
Prerequisite(s): third year standing in an Honours Biology program and permission of the Department.

BIOL 3902 [0.5 credit]  
**Topics in Biology I**  
Specific topics of current interest. Topics may vary from year to year.  
Prerequisite(s): third-year standing in a Biology program or permission of the Department.  
Lecture, seminars, or workshops three hours per week.

BIOL 3999 [0.0 credit]  
**Co-operative Work Term Report**  
Practical experience for students enrolled in the Co-operative Option. Students must receive satisfactory evaluations from their work term employer. Written reports describing the work term project will be required. Graded Sat or Uns.  
Includes: Experiential Learning Activity  
Prerequisite(s): registration in the Biology Co-operative Option and permission of the Department.

BIOL 4008 [0.5 credit]  
**Molecular Plant Development**  
Recent advances in plant development including molecular, biochemical, genomics, and proteomics studies.  
Prerequisite(s): BIOL 2002 or permission of the Department.  
Lectures three hours a week.

BIOL 4102 [0.5 credit]  
**Molecular Ecology**  
The interface of molecular biology, ecology and population biology. Topics include experimental design and a survey and critique of molecular genetic methods to study ecology.  
Prerequisite(s): BIOL 2104 or BIOL 2107 and BIOL 2600; BIOL 3104 or one of BIOL 3601, BIOL 3602 (may be taken concurrently), or permission of the Department.  
Lectures three hours a week.
BIOL 4103 [0.5 credit]  
Population Genetics  
Evolution of gene frequencies, including selection, mutation, genetic drift, inbreeding, gene flow, and population structure.  
Prerequisite(s): BIOL 2104 or BIOL 2107 or permission of the Department. A course in statistics is highly recommended.  
Lectures and seminars three hours a week.

BIOL 4104 [0.5 credit]  
Evolutionary Genetics  
An overview of the molecular evidence of evolution, speciation as well as the phylogenetic analysis of biological sequence data and biometrical traits. Includes: Experiential Learning Activity  
Prerequisite(s): (BIOL 2001 or BIOL 2002) and (BIOL 2104 or BIOL 2107) or permission of the Department. A course in statistics is recommended.  
Lectures and computer lab three hours a week.

BIOL 4106 [0.5 credit]  
Advances in Molecular Biology  
Review of the application of high throughput approaches to research in molecular and cellular biology and biochemistry with an emphasis on gene function and human disease progression.  
Prerequisite(s): BIOL 2303 and (BIOL 3104 or BIOL 3201).  
Lectures and seminars three hours a week.

BIOL 4109 [0.5 credit]  
Laboratory Techniques in Molecular Genetics  
This laboratory course provides practical familiarity with commonly used techniques in molecular genetics. The laboratory is suitable for students with a developing interest in problems of molecular and cellular biology and biochemistry. Includes: Experiential Learning Activity  
Prerequisite(s): BIOL 2200/BIOC 2200 and BIOL 2303 and BIOL 3104 or permission of the Department.  
Lecture/laboratory six hours a week in two sessions.

BIOL 4200 [0.5 credit]  
Immunology  
The organization and function of the immune system, including the anatomy of the immune system, the properties and behaviour of cells of the immune system, and the molecular and genetic bases of the immune response.  
Also listed as BIOC 4200.  
Prerequisite(s): BIOL 3201 or permission of the Department.  
Lectures three hours a week.

BIOL 4201 [0.5 credit]  
Advanced Cell Culture and Tissue Engineering  
Theory and application of current techniques and developments in cell culture as applied to research questions in the field of stem cells and tissue engineering. Includes: Experiential Learning Activity  
Also listed as BIOC 4201.  
Prerequisite(s): BIOL 3201 or permission of the Department.  
Laboratory four hours per week, tutorial one hour a week.  
Labs require regular participation outside of the scheduled lab time to maintain cell cultures and set up or complete experiments.

BIOL 4202 [0.5 credit]  
Mutagenesis and DNA Repair  
A mechanistic study of mutagenesis and DNA repair. Topics include DNA structure perturbations, spontaneous and induced mutagenesis, the genetics and biochemistry of DNA repair and recombination, and the role of mutations in the development of genetic disease and cancer.  
Also listed as BIOC 4202.  
Prerequisite(s): BIOL 3104 and BIOL 2200/BIOC 2200 or permission of the Department.  
Lectures and tutorial three hours a week.

BIOL 4203 [0.5 credit]  
Evolution of Sex  
The evolution of sex, including meiosis, syngamy, sex determination, sex chromosomes, and gender from organismal, genetic, and developmental perspectives; the origin, maintenance, function, and ubiquity of sex.  
Prerequisite(s): BIOL 2104 or BIOL 2107.  
Lectures three hours a week.

BIOL 4206 [0.5 credit]  
Human Genetics  
A survey of human genetic variation and mutation in a molecular genetics context. Topics may include molecular basis of diseases, chromosomal abnormalities, genomic imprinting, cancer genetics, genomics, gene mapping and gene therapy.  
Prerequisite(s): BIOL 3104 or permission of the Department.  
Lectures three hours a week.

BIOL 4207 [0.5 credit]  
Advanced Embryology & Developmental Biology  
A laboratory-based exploration of techniques and recent developments in the use of model embryological systems as applied to questions of development and human health. Includes: Experiential Learning Activity  
Prerequisite(s): BIOL 3201 or BIOL 3202 or permission of the Department.  
Laboratory four hours per week, tutorial one hour a week.  
Labs require regular participation outside of the scheduled lab time to set up or complete experiments.
BIOL 4209 [0.5 credit]
Advanced Plant Physiology
An advanced course dealing with recent developments in selected topics of plant physiology.
Prerequisite(s): BIOL 3205 and CHEM 2203, CHEM 2204 or permission of the Department.
Lectures/discussion three hours a week.

BIOL 4300 [0.5 credit]
Applied Microbiology
Studies of the application of microorganisms. Topics may include: microbial communities, and agricultural, pharmaceutical, industrial and health sciences.
Prerequisite(s): (BIOL 2200/BIOC 2200 or BIOL 2201), BIOL 2303 and (BIOL 3104 or BIOL 3303) or permission of the Department.
Lectures and tutorial three hours a week.

BIOL 4301 [0.5 credit]
Current Topics in Biotechnology
Explorations of developing biotechnologies in areas such as microbial products, protein engineering, plant genetic engineering, environmental remediation, pharmaceuticals production and medical diagnostics and therapy.
Prerequisite(s): BIOL 3301 or permission of the department.
Lectures and tutorials three hours a week.

BIOL 4303 [0.5 credit]
Advances in Microbiology
Exploration of current microbiology including the molecular biology of infectious agents, use of model micro-organisms to study human cells and diseases, and functional genomics and proteomics. Special attention will be paid to the field’s “big questions”. Students will critically examine a number of research proposals.
Prerequisite(s): BIOL 2303 and (BIOL 3104 or BIOL 3303 or BIOC 3102) or permission of the Department.
Lectures three hours per week.

BIOL 4304 [0.5 credit]
Forensic Biology
An introduction to forensics that covers topics in molecular biology, biochemistry, genetics, population genetics and statistics as they relate to forensic biology. The course will describe the techniques used to identify body fluids and generate DNA profiles as well as the interpretation of forensic results.
Prerequisite(s): (BIOL 2104 or BIOL 2107) and (BIOL 2200/BIOC 2200 or BIOL 2201) or permission of the Department.
Lectures three hours a week.

BIOL 4306 [0.5 credit]
Animal Neurophysiology
A course dealing with recent advances made in particular areas of animal neurophysiology. Includes: Experiential Learning Activity
Prerequisite(s): BIOL 3305 or BIOL 3306, or permission of the Department.
Lectures two hours a week, workshops or laboratory four hours a week.

BIOL 4309 [0.5 credit]
Studies in Human Performance
Biomechanical underpinnings of human performance including the quantitative analysis of human motion in normal activities and in athletic performance. Students will learn modern motion capture methods. This course will require students to design and execute an independent project.
Includes: Experiential Learning Activity
Prerequisite(s): BIOL 3307 and fourth-year standing, or permission of the department.
Lecture three hours per week, workshop/labs three hours per week.

BIOL 4317 [0.5 credit]
Neuroethology: The Neural Basis of Animal Behaviour
Proximate mechanisms underlying animal behaviour. Focus on evolution of nervous systems in response to environmental selection pressures. Topics include: genetic and hormonal influences on behaviour (e.g. maternal care); unique sensory worlds (e.g. magnetic); various levels of neural integration, from simple reflexes to complex social behaviour.
Prerequisite(s): BIOL 3305 or BIOL 3306, or permission of the Department.
Lectures three hours a week.

BIOL 4318 [0.5 credit]
Adaptations to Extreme Environments
Lectures, discussions and student presentations will be used to examine adaptations of animals to extreme environments (e.g. desert) or lifestyles (e.g. diving), at the physiological, biochemical and molecular levels. Emphasis on becoming familiar with the current primary literature.
Prerequisite(s): BIOL 3305, or permission of the Department.
Lectures/workshops three hours a week.

BIOL 4319 [0.5 credit]
Studies in Exercise Physiology
Physiological mechanisms underlying human athletic performance. Exercise physiology and cardio-respiratory activity, metabolic regulation and musculoskeletal function. Practical experience will be gained in the workshop/laboratory based experimental sessions.
Includes: Experiential Learning Activity
Prerequisite(s): BIOL 3307 and fourth-year standing, or permission of the department.
Lectures two hours per week, workshop/labs three hours per week.
BIOL 4500 [0.5 credit]  
The Biology of Birds  
Introduction to ornithology, the study of birds; the evolution of birds, migration, geographic variation, adaptations for flight, feeding, reproduction; extinction and preservation.  
Prerequisite(s): BIOL 2001 or permission of the department.  
Lectures three hours per week.

BIOL 4501 [0.5 credit]  
The Taxonomy of Birds  
The taxonomy of birds and species identification are learned through the use of study skins in the lab. Field excursions allow first-hand study of various species. Participants must acquire a pair of binoculars and one of the recommended field guides.  
Includes: Experiential Learning Activity  
Prerequisite(s): BIOL 2001 or permission of the department.  
Laboratory/field excursions four hours per week.

BIOL 4502 [0.5 credit]  
Herpetology  
Herpetology is the study of amphibians and reptiles. The behaviours, physiological ecology, conservation and identification of amphibians and reptiles will be examined through lectures, seminars and hands-on activities.  
Includes: Experiential Learning Activity  
Prerequisite(s): BIOL 2001.  
Lectures or seminars three hours per week.

BIOL 4503 [0.5 credit]  
Fish Ecology, Conservation and Management  
Introduction to the diversity and environmental biology of the world's fishes. Applied issues in fisheries management, conservation, and aquaculture. Workshops expose students to techniques in fisheries science through hands-on demonstrations and field excursions.  
Includes: Experiential Learning Activity  
Prerequisite(s): BIOL 2600 or permission of the Department.  
Lectures/seminars two hours a week, plus labs/workshops two hours a week.

BIOL 4504 [0.5 credit]  
Ecology of Freshwater Invertebrates  
Overview of the diversity and ecology of freshwater invertebrates. Aquatic invertebrates from local bodies of water will be sampled and identified in the lab. Experiments on the ecology and behaviour of model species of freshwater invertebrates will also be conducted in the lab.  
Includes: Experiential Learning Activity  
Prerequisite(s): BIOL 2001 and BIOL 2600.  
Seminar and lab four hours a week.

BIOL 4505 [0.5 credit]  
Coral Reefs  
Examining the diversity of life on coral reefs and their interactions across ecological scales, from the biochemistry of zooxanthellae symbiosis to landscape scale trophodynamics, reticulate evolution, and reef fisheries. Emphasis is on synthesis writing drawn from the current primary literature.  
Prerequisite(s): BIOL 2600.  
Lectures/seminars three hours a week.

BIOL 4506 [0.5 credit]  
Cactus Biology  
Covers the cactus family over its entire range, including most of the western hemisphere, with discussion on their anatomy, physiology, ecology, evolution, and classification. Topics include how cacti are both typical flowering plants in some regards, and atypical in others.  
Prerequisite(s): BIOL 2002.  
Lectures/seminars three hours a week.

BIOL 4507 [0.5 credit]  
Ecological Parasitology  
Key concepts in the ecological study of parasites and pathogens, underpinned by evolutionary thinking and relevant to fundamental and applied questions of co-evolution, disease ecology, epidemiology, emerging infectious diseases, environmental parasitology, evolutionary transitions, host species range, immunity, resistance, tolerance, transmission mode, and virulence.  
Prerequisite(s): BIOL 2600 and one of the following: BIOL 3601, BIOL 3604, BIOL 3609, BIOL 3611, BIOL 3612, BIOL 3801, BIOL 3802, BIOL 3804.  
Lectures or seminars 3 hours per week.

BIOL 4602 [0.5 credit]  
Evolutionary Applications across Disciplines: From Medicine to Conservation  
Evolutionary principles contributing to advancements across fields including medicine, agriculture, conservation, climate change, and engineering. Topics include evolution of virulence, causes of variation in human health, evolution of resistance to pesticides, interventions for recovery of species at risk, and biomimetic modeling in engineering and architecture.  
Prerequisite(s): BIOL 1104 and third-year standing.  
Lectures/workshops three hours per week.

BIOL 4603 [0.5 credit]  
Insect Evolution and Biology  
Major questions on the origin, evolution and adaptation of structures and physiology of terrestrial arthropods, especially insects.  
Includes: Experiential Learning Activity  
Prerequisite(s): BIOL 3004, or permission of the Department.  
Lectures two hours a week, laboratory four hours a week.
BIOL 4604 [0.5 credit]
Landscape Ecology
Landscape ecology is the study of how landscape structure affects the abundance and distribution of organisms. The focus of this course is on research methods and results in landscape ecology. Applications in forestry, agriculture, and species conservation.
Prerequisite(s): BIOL 2600 or equivalent, BIOL 3601 or BIOL 3602 or BIOL 3608 or equivalent, and fourth-year standing in Biology, Geography, or Environmental Sciences.
Lecture three hours a week.

BIOL 4802 [0.5 credit]
Advanced Animal Behaviour
Contemporary issues in behavioural ecology. Topics may include the relevance of behavioural ecology to conservation biology, to new insights into human social behaviour, and will be selected through consultation between professor and students.
Prerequisite(s): BIOL 3802 or BIOL 3804, or permission of the Department.
Lectures or workshops three hours a week.

BIOL 4810 [0.5 credit]
Education Research in Biology
An introduction to the science of teaching and learning in biology. Students will be introduced to the foundational concepts in, and tools of, Discipline-Based Education Research (DBER) and will conduct their own DBER research project.
Includes: Experiential Learning Activity
Prerequisite(s): 4th year standing, or permission of the department. This course can only be used by science students as a free elective.
Seminar three hours per week, classroom-based research one hour per week.

BIOL 4901 [0.5 credit]
Directed Special Studies
Independent or group study, open to third- and fourth-year students to explore a particular topic, in consultation with a Faculty supervisor. May include directed reading, written assignments, tutorials, laboratory or field work.
Prerequisite(s): permission of the Department. Students normally may not offer more than 1.0 credit of Directed Special Studies in their program.

BIOL 4902 [0.5 credit]
Topics in Biology II
Specific topics of current interest. Topics may vary from year to year.
Prerequisite(s): fourth-year standing in a Biology program or permission of the Department.
Lecture, seminars, or workshops three hours per week.

BIOL 4905 [1.0 credit]
Honours Workshop
Within the context of an active learning environment, students participate in a variety of activities which may include literature reviews and critiques, media releases and response papers, oral presentations, and posters. Projects are focused on an area of biological research of interest to the student.
Includes: Experiential Learning Activity
Precludes additional credit for BIOL 4907 and BIOL 4908.
Prerequisite(s): fourth-year standing in an Honours biology program and permission of the Department.
Workshops three hours per week.

BIOL 4907 [1.0 credit]
Honours Essay and Research Proposal
An independent critical review and research proposal, using library resources, under the direct supervision of a Faculty advisor. Evaluation is based on a written report and a poster presentation.
Includes: Experiential Learning Activity
Precludes additional credit for BIOL 4905 and BIOL 4908.
Prerequisite(s): fourth-year standing in an Honours Biology program and permission of the Department.

BIOL 4908 [1.0 credit]
Honours Research Thesis
An independent research project undertaken in the field and/or the laboratory, under the direct supervision of a faculty adviser. Evaluation is based on a written thesis and a poster presentation.
Includes: Experiential Learning Activity
Precludes additional credit for BIOL 4905 and BIOL 4907.
Prerequisite(s): fourth-year standing in an Honours biology program with a minimum CGPA of 8.0 in the major or permission of the Department.