Food Science

This section presents the requirements for programs in:

- Food Science B.Sc. Honours
- Minor in Food Science

Food Science

B.Sc. Honours (20.0 credits)

A. Credits Included in the Major CGPA (9.5 credits)

1. **6.0 credits in:**
 - FOOD 1001 [0.5] Introduction to Food Science
 - FOOD 2001 [0.5] Principles of Nutrition
 - FOOD 2002 [0.5] Food Processing
 - FOOD 2003 [0.5] Regulation of the Canadian Food Industry
 - FOOD 2004 [0.5] Scientific Communication in Food Science
 - FOOD 3001 [0.5] Food Chemistry
 - FOOD 3002 [0.5] Food Analysis
 - FOOD 4001 [0.5] Food Quality Control
 - FOOD 4102 [0.5] Current Issues in Canadian Food Governance, Regulation and Policy
 - FOOD 4103 [0.5] Food Safety Risk Assessment
 - FOOD 4201 [0.5] Advanced Nutrition and Metabolism

2. **1.0 credit from:**
 - FOOD 3003 [0.5] Food Packaging and Shelf Life
 - FOOD 3006 [0.5] Upcycling and Sustainable Food Systems
 - FOOD 4002 [0.5] Analysis of Food Contaminants
 - FOOD 4202 [0.5] Micronutrients and Health
 - FOOD 4203 [0.5] Functional Foods and Natural Health Products

3. **1.0 credit from:**
 - FOOD 4905 [1.0] Food Science Honours Workshop
 - FOOD 4907 [1.0] Food Science Honours Essay and Research Proposal
 - FOOD 4908 [1.0] Food Science Research Project

4. **1.5 credits in:**
 - BIOC 2200 [0.5] Cellular Biochemistry
 - BIOC 3101 [0.5] General Biochemistry I
 - BIOC 4708 [0.5] Principles of Toxicology

B. Credits Not Included in the Major CGPA (10.5 credits)

5. **0.5 credit from:**
 - PHIL 1550 [0.5] Introduction to Ethics and Social Issues
 - PHIL 2408 [0.5] Bioethics

6. **1.0 credit in:**
 - ECON 1001 [0.5] Introduction to Microeconomics
 - ECON 1002 [0.5] Introduction to Macroeconomics

7. **0.5 credit from:**
 - 0.5 credit in ECON at the 3000 level, or
 - BUSI 2204 [0.5] Basic Marketing

8. **2.5 credits in:**
 - CHEM 1001 [0.5] General Chemistry I
 - CHEM 1002 [0.5] General Chemistry II
 - CHEM 2203 [0.5] Organic Chemistry I
 - CHEM 2204 [0.5] Organic Chemistry II
 - CHEM 2303 [0.5] Analytical Chemistry II

9. **2.0 credits in:**
 - BIOL 1103 [0.5] Foundations of Biology I
 - BIOL 1104 [0.5] Foundations of Biology II
 - BIOL 2104 [0.5] Introductory Genetics
 - BIOL 2303 [0.5] Microbiology
 - MATH 1007 [0.5] Elementary Calculus I
 - STAT 2507 [0.5] Introduction to Statistical Modeling I
 - STAT 2509 [0.5] Introduction to Statistical Modeling II

10. **1.5 credits in:**
 - PHYS 1007 [0.5] Elementary University Physics I
 - PHYS 1008 [0.5] Physical University Physics II

11. **0.5 credit in:**
 - BUSI 2204 [0.5] Basic Marketing

12. **0.5 credit from:**
 - BIOC 3102 [0.5] General Biochemistry II
 - BIOC 3104 [0.5] Molecular Genetics

13. **0.5 credit from:**
 - Courses listed in but not used to fulfill item 13 above, one of:
 - BIOC 3008 [0.5] Bioinformatics
 - BIOL 3102 [0.5] General Biochemistry II
 - BIOL 3202 [0.5] Biophysical Techniques and Applications
 - BIOL 3203 [0.5] Biochemical Pharmacology
 - BIOL 4004 [0.5] Industrial Biochemistry
 - BIOL 4202 [0.5] Mutagenesis and DNA Repair
 - BIOL 3104 [0.5] Molecular Genetics
 - BIOL 4106 [0.5] Advances in Molecular Biology
 - CHEM 3201 [0.5] Advanced Organic Chemistry I

14. **1.0 credit in free electives**

Total Credits: 20.0

Minor in Food Science (4.0 credits)

The Minor in Food Science is available to degree students registered in programs other than the Food Science B.Sc. Honours program. Note that there are several prerequisites in Chemistry, Biochemistry and Math that may also need to be satisfied.

Students are required to present a Minor CGPA of 4.00 or higher at graduation in order to be awarded a Minor in Food Science.

Requirements

1. **0.5 credit in:**
 - FOOD 1001 [0.5] Introduction to Food Science

2. **0.5 credit from:**
 - FOOD 2001 [0.5] Principles of Nutrition
 - FOOD 2002 [0.5] Food Processing

3. **3.0 credits in FOOD at 2000-level or higher**

4. The remaining requirements of the major discipline(s) and degree must be satisfied.

Total Credits: 4.0

B.Sc. Regulations

The regulations presented in this section apply to all Bachelor of Science programs. In addition to the requirements presented here, students must satisfy the
University regulations common to all undergraduate students including the process of Academic Continuation Evaluation (see the Academic Regulations of the University section of this Calendar).

Breadth Requirement for the B.Sc.

Students in a Bachelor of Science program must present the following credits at graduation:

1. 2.0 credits in Science Continuation courses not in the major discipline; students completing a double major are considered to have completed this requirement providing they have 2.0 credits in Science Continuation courses in each of the two majors;
2. 2.0 credits in courses outside of the faculties of Science and Engineering and Design (may include NSCI 1000)

In most cases, the requirements for individual B.Sc. programs, as stated in this Calendar, contain these requirements, explicitly or implicitly.

Students admitted to B.Sc. programs by transfer from another institution must present at graduation (whether taken at Carleton or elsewhere):

1. 2.0 credits in courses outside of the faculties of Science and Engineering and Design (may include NSCI 1000) if the student received fewer than 10.0 transfer credits; or,
2. 1.0 credit in courses outside of the faculties of Science and Engineering and Design (may include NSCI 1000) if the student received 10.0 or more transfer credits.

Declared and Undeclared Students

Degree students are considered "Undeclared" if they have been admitted to a degree, but have not yet selected and been accepted into a program within that degree. The status "Undeclared" is available only in the B.A. and B.Sc. degrees. Undeclared students must apply to enter a program upon or before completing 3.5 credits.

Change of Program within the B.Sc. Degree

To transfer to a program within the B.Sc. degree, applicants must normally be Eligible to Continue (EC) in the new program, by meeting the CGPA thresholds described in Section 3.1.9 of the Academic Regulations of the University.

Applications to declare or change programs within the B.Sc. degree must be made online through Carleton Central by completing a Change of Program Elements (COPE) application form within the published deadlines. Acceptance into a program, or into a program element or option, is subject to any enrolment limitations, and/or specific program, program element or option requirements as published in the relevant Calendar entry.

Minors, Concentrations, and Specializations

Students may add a Minor, Concentration, or Specialization by completing a Change of Program Elements (COPE) application form online through Carleton Central. Acceptance into a Minor, Concentration, or Specialization normally requires that the student be Eligible to Continue (EC) and is meeting the minimum CGPAs described in Section 3.1.9 of the Academic Regulations of the University, as well as being subject to any specific requirements of the intended Minor, Concentration, or Specialization as published in the relevant Calendar entry.

Experimental Science Requirement

Students in a B.Sc. degree program must present at graduation at least two full credits of Experimental Science chosen from two different departments or institutes from the list below:

Approved Experimental Science Courses

<table>
<thead>
<tr>
<th>Biochemistry</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOC 2200 [0.5]</td>
<td>Cellular Biochemistry</td>
<td></td>
</tr>
<tr>
<td>BIOC 4001 [0.5]</td>
<td>Methods in Biochemistry</td>
<td></td>
</tr>
<tr>
<td>BIOC 4201 [0.5]</td>
<td>Advanced Cell Culture and Tissue Engineering</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biology</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOL 1103 [0.5]</td>
<td>Foundations of Biology I</td>
<td></td>
</tr>
<tr>
<td>BIOL 1104 [0.5]</td>
<td>Foundations of Biology II</td>
<td></td>
</tr>
<tr>
<td>BIOL 2001 [0.5]</td>
<td>Animals: Form and Function</td>
<td></td>
</tr>
<tr>
<td>BIOL 2002 [0.5]</td>
<td>Plants: Form and Function</td>
<td></td>
</tr>
<tr>
<td>BIOL 2104 [0.5]</td>
<td>Introductory Genetics</td>
<td></td>
</tr>
<tr>
<td>BIOL 2200 [0.5]</td>
<td>Cellular Biochemistry</td>
<td></td>
</tr>
<tr>
<td>BIOL 2600 [0.5]</td>
<td>Ecology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chemistry</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 1001 [0.5]</td>
<td>General Chemistry I</td>
<td></td>
</tr>
<tr>
<td>CHEM 1002 [0.5]</td>
<td>General Chemistry II</td>
<td></td>
</tr>
<tr>
<td>CHEM 2103 [0.5]</td>
<td>Physical Chemistry I</td>
<td></td>
</tr>
<tr>
<td>CHEM 2203 [0.5]</td>
<td>Organic Chemistry I</td>
<td></td>
</tr>
<tr>
<td>CHEM 2204 [0.5]</td>
<td>Organic Chemistry II</td>
<td></td>
</tr>
<tr>
<td>CHEM 2302 [0.5]</td>
<td>Analytical Chemistry I</td>
<td></td>
</tr>
<tr>
<td>CHEM 2303 [0.5]</td>
<td>Analytical Chemistry II</td>
<td></td>
</tr>
<tr>
<td>CHEM 2800 [0.5]</td>
<td>Foundations for Environmental Chemistry</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Earth Sciences</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ERTH 1006 [0.5]</td>
<td>Exploring Planet Earth</td>
<td></td>
</tr>
<tr>
<td>ERTH 1009 [0.5]</td>
<td>The Earth System Through Time</td>
<td></td>
</tr>
<tr>
<td>ERTH 2102 [0.5]</td>
<td>Mineralogy to Petrology</td>
<td></td>
</tr>
<tr>
<td>ERTH 2404 [0.5]</td>
<td>Engineering Geoscience</td>
<td></td>
</tr>
<tr>
<td>ERTH 2802 [0.5]</td>
<td>Field Geology I</td>
<td></td>
</tr>
<tr>
<td>ERTH 3111 [0.5]</td>
<td>Vertebrate Evolution: Mammals, Reptiles, and Birds</td>
<td></td>
</tr>
<tr>
<td>ERTH 3112 [0.5]</td>
<td>Vertebrate Evolution: Fish and Amphibians</td>
<td></td>
</tr>
<tr>
<td>ERTH 3204 [0.5]</td>
<td>Mineral Deposits</td>
<td></td>
</tr>
<tr>
<td>ERTH 3205 [0.5]</td>
<td>Physical Hydrogeology</td>
<td></td>
</tr>
<tr>
<td>ERTH 3806 [0.5]</td>
<td>Structural Geology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Food Sciences</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FOOD 3001 [0.5]</td>
<td>Food Chemistry</td>
<td></td>
</tr>
<tr>
<td>FOOD 3002 [0.5]</td>
<td>Food Analysis</td>
<td></td>
</tr>
<tr>
<td>FOOD 3005 [0.5]</td>
<td>Food Microbiology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geography</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GEGO 1010 [0.5]</td>
<td>Global Environmental Systems</td>
<td></td>
</tr>
<tr>
<td>GEGO 3108 [0.5]</td>
<td>Soil Properties</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Neuroscience</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NEUR 3206 [0.5]</td>
<td>Sensory and Motor Neuroscience</td>
<td></td>
</tr>
<tr>
<td>NEUR 3207 [0.5]</td>
<td>Systems Neuroscience</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>NEUR 4600</td>
<td>Advanced Lab in Neuroanatomy</td>
<td></td>
</tr>
<tr>
<td>PHYS 1001</td>
<td>Foundations of Physics I</td>
<td></td>
</tr>
<tr>
<td>PHYS 1002</td>
<td>Foundations of Physics II</td>
<td></td>
</tr>
<tr>
<td>PHYS 1003</td>
<td>Introductory Mechanics and Thermodynamics</td>
<td></td>
</tr>
<tr>
<td>PHYS 1004</td>
<td>Introductory Electromagnetism and Wave Motion</td>
<td></td>
</tr>
<tr>
<td>PHYS 1007</td>
<td>Elementary University Physics I</td>
<td></td>
</tr>
<tr>
<td>PHYS 1008</td>
<td>Elementary University Physics II</td>
<td></td>
</tr>
<tr>
<td>PHYS 2202</td>
<td>Wave Motion and Optics</td>
<td></td>
</tr>
<tr>
<td>PHYS 2604</td>
<td>Modern Physics I</td>
<td></td>
</tr>
<tr>
<td>PHYS 3007</td>
<td>Third Year Physics Laboratory: Selected Experiments and Seminars</td>
<td></td>
</tr>
<tr>
<td>PHYS 3606</td>
<td>Modern Physics II</td>
<td></td>
</tr>
<tr>
<td>PHYS 3608</td>
<td>Modern Applied Physics</td>
<td></td>
</tr>
</tbody>
</table>

Course Categories for B.Sc. Programs

<table>
<thead>
<tr>
<th>Category</th>
<th>Courses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Science Geography Courses</td>
<td>GEOG 1010 [0.5] Global Environmental Systems</td>
</tr>
<tr>
<td></td>
<td>GEOG 2006 [0.5] Introduction to Quantitative Research</td>
</tr>
<tr>
<td></td>
<td>GEOG 2013 [0.5] Weather and Water</td>
</tr>
<tr>
<td></td>
<td>GEOG 2014 [0.5] The Earth's Surface</td>
</tr>
<tr>
<td></td>
<td>GEOG 3003 [0.5] Quantitative Geography</td>
</tr>
<tr>
<td></td>
<td>GEOG 3010 [0.5] Field Methods in Physical Geography</td>
</tr>
<tr>
<td></td>
<td>GEOG 3102 [0.5] Geomorphology</td>
</tr>
<tr>
<td></td>
<td>GEOG 3103 [0.5] Watershed Hydrology</td>
</tr>
<tr>
<td></td>
<td>GEOG 3104 [0.5] Principles of Biogeography</td>
</tr>
<tr>
<td></td>
<td>GEOG 3105 [0.5] Climate and Atmospheric Change</td>
</tr>
<tr>
<td></td>
<td>GEOG 3106 [0.5] Aquatic Science and Management</td>
</tr>
<tr>
<td></td>
<td>GEOG 3108 [0.5] Soil Properties</td>
</tr>
<tr>
<td></td>
<td>GEOG 4000 [0.5] Field Studies</td>
</tr>
<tr>
<td></td>
<td>GEOG 4005 [0.5] Directed Studies in Geography</td>
</tr>
<tr>
<td></td>
<td>GEOG 4013 [0.5] Cold Region Hydrology</td>
</tr>
<tr>
<td></td>
<td>GEOG 4017 [0.5] Global Biogeochemical Cycles</td>
</tr>
<tr>
<td></td>
<td>GEOG 4101 [0.5] Two Million Years of Environmental Change</td>
</tr>
<tr>
<td></td>
<td>GEOG 4103 [0.5] Water Resources Engineering</td>
</tr>
<tr>
<td></td>
<td>GEOG 4104 [0.5] Microclimatology</td>
</tr>
<tr>
<td></td>
<td>GEOG 4108 [0.5] Permafrost</td>
</tr>
</tbody>
</table>

Science Psychology Courses	PSYC 2001 [0.5] Introduction to Research Methods in Psychology
	PSYC 2002 [0.5] Introduction to Statistics in Psychology
	PSYC 2700 [0.5] Introduction to Cognitive Psychology
	PSYC 3000 [1.0] Design and Analysis in Psychological Research
	PSYC 3506 [0.5] Cognitive Development
	PSYC 3700 [1.0] Cognition (Honours Seminar)
	PSYC 3702 [0.5] Perception
	PSYC 2307 [0.5] Human Neuropsychology I
	PSYC 3307 [0.5] Human Neuropsychology II

Science Continuation Courses

A course at the 2000 level or above may be used as a Science Continuation credit in a B.Sc. program if it is not in the student's major discipline, and is chosen from the following:

- BIOC (Biochemistry)
- BIOL (Biology) Biochemistry students may use BIOL 2005 only as a free elective.
- CHEM (Chemistry)
- COMP (Computer Science) A maximum of two half-credits at the 1000-level in COMP, excluding COMP 1001 may be used as Science Continuation credits.
- ERTH (Earth Sciences), except ERTH 2415 which may be used only as a free elective for any B.Sc. program. Students in Earth Sciences programs may use ERTH 2401, ERTH 2402, and ERTH 2403 only as free electives.

Engineering. Students wishing to register in Engineering courses must obtain the permission of the Faculty of Engineering and Design.

- ENSC (Environmental Science)
- FOOD (Food Science and Nutrition)
- GEOM (Geomatics)
- HLTH (Health Sciences)
- ISAP (Interdisciplinary Science Practice)
- MATH (Mathematics)
- NEUR (Neuroscience)
- PHYS (Physics), except PHYS 2903
- TSES (Technology, Society, Environment) except TSES 2305. Biology students may use these courses only as free electives. Integrated Science and Environmental Science students may include these courses in their programs but may not count them as part of the Science Sequence.

Science Faculty Electives

Science Faculty Electives are courses at the 1000-4000 level chosen from:

- BIOC (Biochemistry)
- BIOL (Biology) Biology & Biochemistry students may use BIOL 1010 and BIOL 2005 only as free electives
- CHEM (Chemistry) except CHEM 1003, CHEM 1004 and CHEM 1007
- COMP (Computer Science) except COMP 1001
- ERTH (Earth Sciences) except ERTH 1010, ERTH 1011 and ERTH 2415. Earth Sciences students may use ERTH 2401, ERTH 2402, and ERTH 2403 only as free electives.
- ENSC 2001
- FOOD (Food Science and Nutrition)
- GEOM (Geomatics)
- HLTH (Health Science)
- ISAP (Interdisciplinary Science Practice)
- MATH (Mathematics)
- NEUR (Neuroscience)
B.Sc. program:
The following courses are not acceptable for credit in any
Prohibited Courses
Free Electives
and Engineering and Design (may include NSCI 1000)
Approved Courses Outside the Faculties of Science
Electives list above.
Approved Courses Outside the Faculties of Science
and Engineering Design (may include NSCI 1000)
Approved Science Faculty Electives are courses at
the 2000-4000 level chosen from the Science Faculty
Electives list above.
Approved Courses Outside the Faculties of Science
and Engineering Design (may include NSCI 1000)
Approved Science Faculty Electives are courses at
the 2000-4000 level chosen from the Science Faculty
Electives list above.
Approved Courses Outside the Faculties of Science
and Engineering Design (may include NSCI 1000)
Approved Science Faculty Electives are courses at
the 2000-4000 level chosen from the Science Faculty
Electives list above.
Approved Courses Outside the Faculties of Science
and Engineering Design (may include NSCI 1000)
Approved Science Faculty Electives are courses at
the 2000-4000 level chosen from the Science Faculty
Electives list above.
Approved Courses Outside the Faculties of Science
and Engineering Design (may include NSCI 1000)
Approved Science Faculty Electives are courses at
the 2000-4000 level chosen from the Science Faculty
Electives list above.
Approved Courses Outside the Faculties of Science
and Engineering Design (may include NSCI 1000)
Approved Science Faculty Electives are courses at
the 2000-4000 level chosen from the Science Faculty
Electives list above.
Approved Courses Outside the Faculties of Science
and Engineering Design (may include NSCI 1000)
Approved Science Faculty Electives are courses at
the 2000-4000 level chosen from the Science Faculty
Electives list above.

Free Electives
Any course is allowable as a Free Elective providing it
is not prohibited (see below). Students are expected to
comply with prerequisite requirements and enrolment
restrictions for all courses as published in this Calendar.

Courses Allowable Only as Free Electives in any
B.Sc. Program
BIOL 4810 [0.5] Education Research in Undergraduate Science
CHEM 1003 [0.5] The Chemistry of Food, Health and Drugs
CHEM 1004 [0.5] Drugs and the Human Body
CHEM 1007 [0.5] Chemistry of Art and Artifacts
ERTH 1010 [0.5] Our Dynamic Planet Earth
ERTH 1011 [0.5] Evolution of the Earth
ERTH 2415 [0.5] Natural Disasters
ISCI 1001 [0.5] Introduction to the Environment
ISCI 2000 [0.5] Natural Laws
ISCI 2002 [0.5] Human Impacts on the Environment
MATH 0107 [0.5] Algebra and Geometry
MATH 1401 [0.5] Elementary Mathematics for Economics I
MATH 1402 [0.5] Elementary Mathematics for Economics II

Co-operative Education
For more information about how to apply for the Co-op
program and how the Co-op program works please visit
the Co-op website.

All students participating in the Co-op program are
governed by the Undergraduate Co-operative Education
Policy.

Undergraduate Co-operative Education Policy
Admission Requirements
Students can apply to Co-op in one of two ways: directly
from high school, or after beginning a degree program at
Carleton.

If a student applies to a degree program with a Co-op
option from high school, their university grades will be
reviewed two terms to one year prior to their first work
term to ensure they meet the academic requirements after
their first or second year of study. The time at which the
evaluation takes place depends on the program of study.
Students will automatically receive an admission decision
via their Carleton email account.

Students who did not request Co-op at the time they
applied to Carleton can request Co-op after they begin
their university studies. To view application instructions
deadlines, please visit carleton.ca/co-op.

To be admitted to Co-op, a student must successfully
complete 5.0 or more credits that count towards their
degree, meet the minimum CGPA requirement(s) for
the student's Co-op option, and fulfill any specified
course prerequisites. To see the unique admission
and continuation requirements for each Co-op option,
please refer to the specific degree programs listed in the
Undergraduate Calendar.

Participation Requirements
COOP 1000
Once a student has been given admission or continuation
confirmation to the co-op option s/he must complete and
pass COOP 1000 (a mandatory online 0.0 credit course).
Students will have access to this course a minimum of two
terms prior to their first work term and will be notified when
to register.

Communication with the Co-op Office
Students must maintain contact with the co-op office
during their job search and while on a work term. All
e-mail communication will be conducted via the students'
Carleton email account.

Employment
Although every effort is made to ensure a sufficient
number of job postings for all students enrolled in the
co-op option of their degree program, no guarantee of
employment can be made. Carleton's co-op program
operates a competitive job search process and is
dependent upon current market conditions. Academic
performance, skills, motivation, maturity, attitude and potential will determine whether a student is offered a job. It is the student's responsibility to actively conduct a job search in addition to participation in the job search process operated by the co-op office. Once a student accepts a co-op job offer (verbally or written), his/her job search will end and access to co-op jobs will be removed for that term. Students that do not successfully obtain a co-op work term are expected to continue with their academic studies. The summer term is the exception to this rule. Students should also note that hiring priority is given to Canadian citizens for co-op positions in the Federal Government of Canada.

Registering in Co-op Courses
Students will be registered in a Co-op Work Term course while at work. The number of Co-op Work Term courses that a student is registered in is dependent upon the number of four-month work terms that a student accepts.

While on a co-op work term students may take a maximum of 0.5 credit throughout each four-month co-op work term. Courses must be scheduled outside of regular working hours.

Students must be registered as full-time before they begin their co-op job search. All co-op work terms must be completed before the beginning of the final academic term. Students may not finish their degree on a co-op work term.

Work Term Assessment and Evaluation
To obtain a Satisfactory grade for the co-op work term students must have:

1. A satisfactory work term evaluation by the co-op employer;
2. A satisfactory grade on the work term report.

Students must submit a work term report at the completion of each four-month work term. Reports are due on the 16th of April, August, and December and students are notified of due dates through their Carleton email account.

Workplace performance will be assessed by the workplace supervisor. Should a student receive an unsatisfactory rating from their co-op employer, an investigation by the co-op program manager will be undertaken. An unsatisfactory employer evaluation does not preclude a student from achieving an overall satisfactory rating for the work term.

Graduation with the Co-op Designation
In order to graduate with the co-op designation, students must satisfy all requirements for their degree program in addition to the requirements according to each co-op program (i.e. successful completion of three or four work terms).

Note: Participation in the co-op option will add up to one additional year for a student to complete their degree program.

Voluntary Withdrawal from the Co-op Option
Students may withdraw from the co-op option of their degree program during a study term ONLY. Students at work may not withdraw from the work term or the co-op option until s/he has completed the requirements of the work term.

Students are eligible to continue in their regular academic program provided that they meet the academic standards required for continuation.

Involuntary or Required Withdrawal from the Co-op Option
Students may be required to withdraw from the co-op option of their degree program for one or any of the following reasons:

1. Failure to achieve a grade of SAT in COOP 1000
2. Failure to pay all co-op related fees
3. Failure to actively participate in the job search process
4. Failure to attend all interviews for positions to which the student has applied
5. Declining more than one job offer during the job search process
6. Continuing a job search after accepting a co-op position
7. Dismissal from a work term by the co-op employer
8. Leaving a work term without approval by the Co-op manager
9. Receipt of an unsatisfactory work term evaluation
10. Submission of an unsatisfactory work term report

Standing and Appeals
The Co-op and Career Services office administers the regulations and procedures that are applicable to all co-op program options. All instances of a student's failure during a work term or other issues directly related to their participation in the co-op option will be reported to the academic department.

Any decision made by the Co-op and Career Services office can be appealed via the normal appeal process within the University.

International Students
All International Students are required to possess a Co-op Work Permit issued by Immigration, Refugees and Citizenship Canada before they can begin working. It is illegal to work in Canada without the proper authorization. Students will be provided with a letter of support to accompany their application. Students must submit their application for their permit before being permitted to view and apply for jobs on the Co-op Services database. Confirmation of a position will not be approved until a student can confirm they have received their permit. Students are advised to discuss the application process and requirements with the International Student Services Office.

B.Sc. Honours Food Science: Co-op Admission and Continuation Requirements

- Maintain full-time status in each study term;
- Be eligible to work in Canada (for off-campus work);
- Have successfully completed COOP 1000.

In addition to the following:
Admission is not guaranteed. Some programs may also require specific course prerequisites and prerequisite averages and/or supplementary admission portfolios. Consult admissions.carleton.ca for further details.

Note: If a course is listed as recommended, it is not mandatory for admission. Students who do not follow the recommendations will not be disadvantaged in the admission process.

Degrees
- B.Sc. (Honours)
- B.Sc. (Major)
- B.Sc.

Admission Requirements

B. Sc. Honours

First Year

The Ontario Secondary School Diploma (OSSD) or equivalent including a minimum of six 4U or M courses. For most programs including Biochemistry, Bioinformatics, Biotechnology, Chemistry, Combined Honours in Biology and Physics, Chemistry and Physics, Computational Biochemistry, Food Science, Nanoscience, Neuroscience and Biology, Neuroscience and Mental Health, and Psychology, the six 4U or M courses must include Advanced Functions, and two of Biology, Chemistry, Earth and Space Sciences, or Physics. (Calculus and Vectors is strongly recommended).

Specific Honours Admission Requirements

For the Honours programs in Earth Sciences, Environmental Science, Geomatics, Interdisciplinary Science and Practice, and Physical Geography, Calculus and Vectors may be substituted for Advanced Functions.

For the Honours programs in Physics and Applied Physics, and for double Honours in Mathematics and Physics, Calculus and Vectors is required in addition to Advanced Functions and one of 4U Physics, Chemistry, Biology, or Earth and Space Sciences. For all programs in Physics, 4U Physics is strongly recommended.

For Honours in Psychology, a 4U course in English is recommended.

For Honours in Environmental Science, a 4U course in Biology and Chemistry is recommended.

Advanced Standing

Applications for admission beyond first year will be assessed on their merits. Applicants must normally be Eligible to Continue in their year level, in addition to meeting the CGPA thresholds described in Section 3.1.9 of the Academic Regulations of the University. Advanced standing will be granted only for those subjects deemed appropriate for the program and stream selected.

B.Sc. Major and B.Sc.

First Year

The Ontario Secondary School Diploma (OSSD) or equivalent including a minimum of six 4U or M courses. The six 4U or M courses must include Advanced Functions and two of Calculus and Vectors, Biology, Chemistry, Earth and Space Science, or Physics.
and Vectors is strongly recommended). For the B.Sc. Major in Physics, 4U Physics is strongly recommended.

Advanced Standing
Applications for admission beyond first year will be assessed on their merits. Applicants must normally be Eligible to Continue (EC) in their year level. Advanced standing will be granted only for those subjects deemed appropriate for the program and stream selected.

Co-op Option
Direct Admission to the First Year of the Co-op Option
Applicants must:

1. meet the required overall admission cut-off average and prerequisite course average. These averages may be higher than the stated minimum requirements;
2. be registered as a full-time student in the Bachelor of Science Honours program;
3. be eligible to work in Canada (for off-campus work placements).

Note that meeting the above requirements only establishes eligibility for admission to the program. The prevailing job market may limit enrolment in the co-op option.

Note: continuation requirements for students previously admitted to the co-op option and admission requirements for the co-op option after beginning the program are described in the Co-operative Education Regulations section of this Calendar.

Food Science (FOOD) Courses

FOOD 1001 [0.5 credit]
Introduction to Food Science
Overview of the food industry. Production, processing, product development, packaging, chemistry, analysis, microbiology. Elements risk assessment, policy making and regulation.
Lectures three hours a week.

FOOD 2001 [0.5 credit]
Principles of Nutrition
Prerequisite(s): CHEM 1002, BIOL 1103.
Lectures three hours a week.

FOOD 2002 [0.5 credit]
Food Processing
Principles of major techniques used in food processing and preservation. Processing of specific food groups including cereals, oilseeds, dairy, beverages and frozen foods. Effects of processing on physico-chemical, rheological, and sensory characteristics. Role of research and development in food industry.
Prerequisite(s): FOOD 1001.
Lectures three hours a week.

FOOD 2003 [0.5 credit]
Regulation of the Canadian Food Industry
Regulation of the Canadian food industry including regulators, regulatory powers, the process of enacting laws/regulation and food safety requirements. Food composition, standardization, advertising, labeling, packaging, ingredients, additives, and fortification requirements. Inspection, enforcement and compliance powers and policies.
Prerequisite(s): Second year standing.
Lectures three hours per week.

FOOD 2004 [0.5 credit]
Scientific Communication in Food Science
Principles of effective scientific communication for scientific and non-scientific audiences. Applicable to laboratory reports, literature reviews, posters, presentations, and briefing notes.
Includes: Experiential Learning Activity
Prerequisite(s): FOOD 1001 and second-year standing in Food Science or Chemistry.
Workshop four hours a week.

FOOD 3001 [0.5 credit]
Food Chemistry
Chemistry of the major components of foods such as proteins, lipids, carbohydrates and of the minor components such as enzymes, vitamins and various additives and their relationships to food stability and degradation.
Includes: Experiential Learning Activity
Prerequisite(s): FOOD 1001, FOOD 2001, CHEM 2204, BIOC 2200.
Lectures three hours a week and laboratory three hours a week.

FOOD 3002 [0.5 credit]
Food Analysis
In-depth principles and practices of food proximate analysis. Introductory concepts of food adulteration and detection. Major techniques such as chromatography, colorimetry, spectroscopy, rheology.
Includes: Experiential Learning Activity
Prerequisite(s): FOOD 1001, FOOD 2001, FOOD 3001.
Lectures three hours a week, laboratory three hours a week.
FOOD 3003 [0.5 credit]
Food Packaging and Shelf Life
An introduction to the materials used for food packaging, including their chemical and physical characteristics. Interactions of these materials with food products, and their effects on shelf life of food. Prerequisite(s): FOOD 2002. Lectures three hours a week.

FOOD 3005 [0.5 credit]
Food Microbiology
Foodborne diseases, microbial growth and survival, food spoilage, food fermentation. Techniques for detecting and quantifying microorganisms in foods. Includes: Experiential Learning Activity Prerequisite(s): FOOD 1001, FOOD 2001, BIOL 2303. Lectures three hours a week, laboratory three hours a week.

FOOD 3006 [0.5 credit]
Upcycling and Sustainable Food Systems
Food processing and upcycling in the context of sustainable food systems. Case studies to assess social, economic, and environmental impacts of food processing and upcycling on communities and the food industry. Transdisciplinary perspectives to propose a food rescue product. Includes: Experiential Learning Activity Prerequisite(s): third year standing in a BSc or BHSc program. Workshop 3 hours a week.

FOOD 3999 [0.0 credit]
Co-operative Work Term
Provides practical experience for students enrolled in the Co-operative option. Students must receive satisfactory evaluations from their work term employer. Written and oral reports will be required. Graded as Sat or Uns. Includes: Experiential Learning Activity Prerequisite(s): Registration in the Food Science Co-operative Education option and permission of the Department.
Work term.

FOOD 4001 [0.5 credit]
Food Quality Control
Factors affecting quality in manufacturing and processing of foods and principles of quality control and quality assurance. Sampling plans and statistical methods. Applications of physical, chemical, biological and microbiological tests in quality control. Quality systems and standards. Prerequisite(s): FOOD 2002, FOOD 2003, and third or fourth year standing. Also offered at the graduate level, with different requirements, as FOOD 5104, for which additional credit is precluded. Lectures three hours a week.

FOOD 4002 [0.5 credit]
Analysis of Food Contaminants
Official methods to identify food contaminants and adulterated foods. Includes agricultural chemicals, veterinary drugs, toxins, metals, and allergens. Interpretation of results in the context of current Canadian and international food safety regulations. Includes: Experiential Learning Activity Prerequisite(s): BIOC 3101 or CHEM 3205 or CHEM 3305, and third or fourth year standing. Laboratory four hours per week, tutorial one hour a week.

FOOD 4102 [0.5 credit]
Current Issues in Canadian Food Governance, Regulation and Policy
Focus on the ever-changing and evolving issues in Canadian food governance, regulation and policy. Topical food safety, governance, policies, enforcement, trade and import/export issues and developments. Prerequisite(s): FOOD 2003, and third or fourth year standing. Lectures three hours a week.

FOOD 4103 [0.5 credit]
Food Safety Risk Assessment
The role of risk management in providing science-based approaches to solving food safety problems. Risk management models and practical applications in critical risk management. An examination of actual risk assessments. Risk communication is addressed. Prerequisite(s): BIOC 3101, and third or fourth-year standing. Lectures three hours a week.
FOOD 4201 [0.5 credit]
Advanced Nutrition and Metabolism
Metabolism of macronutrients in the human body. Detailed catabolic and anabolic reactions of carbohydrates, lipids and proteins. Regulatory control points in healthy and diseased states. Discussion of the literature pertaining to nutrition, metabolism and chronic disease.
Prerequisite(s): FOOD 2001, BIOC 3101 and fourth year standing.
Also offered at the graduate level, with different requirements, as FOOD 5101, for which additional credit is precluded.
Lectures three hours a week.

FOOD 4202 [0.5 credit]
Micronutrients and Health
Use of scientific literature to examine human metabolism of vitamins and minerals and associated diseases throughout the life cycle. Development of advanced scientific literacy skills, with an emphasis on systematic reviews.
Prerequisite(s): BIOC 2200 or BIOL 2200 and third- or fourth-year standing.
Lectures three hours a week.

FOOD 4203 [0.5 credit]
Functional Foods and Natural Health Products
Study of the bioactive components of functional foods and natural health products, for the improvement of health and nutrition. Sources and chemistry of bioactives, mechanisms of actions, process technology, efficacy and safety. Role of research and development in industry in commercialization of new products.
Prerequisite(s): BIOC 2200 or BIOL 2200 or BIOL 2201, and third or fourth year standing.
Also offered at the graduate level, with different requirements, as FOOD 5105, for which additional credit is precluded.
Lectures three hours a week.

FOOD 4905 [1.0 credit]
Food Science Honours Workshop
Active learning in areas that include information literacy, critical evaluation of scientific literature, written and oral communication, evaluation and interpretation of results, statistics and data management. Emphasizes transferable skills that are most appropriate for non-research career paths.
Includes: Experiential Learning Activity
Precludes additional credit for FOOD 4907, FOOD 4908.
Prerequisite(s): Fourth-year standing in Food Science and a minimum of 1.5 credits in FOOD at the 3000 level.
Workshop three hours a week.

FOOD 4907 [1.0 credit]
Food Science Honours Essay and Research Proposal
Students conduct an independent research study using library resources, and prepare a critical review and study proposal on a topic approved by a faculty supervisor. A written report and an oral poster presentation of the work are required before a grade can be assigned.
Includes: Experiential Learning Activity
Precludes additional credit for FOOD 4905, FOOD 4908, CHEM 4907 and CHEM 4908.
Prerequisite(s): Fourth-year standing in the Food Science program, a minimum of 1.5 credits in FOOD at the 3000 level, minimum Major CGPA of 8.0, and permission of the department.

FOOD 4908 [1.0 credit]
Food Science Research Project
Students in Food Science carry out a research project under the direction of a faculty member. A written report and an oral presentation of the work are required before a grade can be assigned.
Includes: Experiential Learning Activity
Precludes additional credit for FOOD 4905, FOOD 4907, CHEM 4907 and CHEM 4908.
Prerequisite(s): Fourth-year standing in the Food Science program, a minimum of 1.5 credits in FOOD at the 3000 level, minimum Major CGPA of 8.0, and permission of the department.
Laboratory and associated work equivalent to at least eight hours per week for two terms.