Print and PDF Options

This is an archived copy of the 2018-2019 catalog. To access the most recent version of the catalog, please visit http://calendar.carleton.ca.

Department of Mechanical and Aerospace Engineering
(Faculty of Engineering and Design)

Mechanical Engineering (MECH) Courses

MECH 3002 [0.5 credit]
Machine Design and Practice

The design of mechanical machine elements is studied from theoretical and practical points of view. Topics covered include: design factors, fatigue, and discrete machine elements. Problem analysis emphasizes the application to practical mechanical engineering problems.
Prerequisite(s): MAAE 2001 and MAAE 3202.
Lectures three hours a week, problem analysis three hours a week.

MECH 3310 [0.5 credit]
Biofluid Mechanics

Applications of fundamental fluid mechanics to human circulatory and respiratory systems. Basic viscous flow theory including: blood flow in the heart and large arteries, air flow in extra-thoracic (nose-mouth throat) airways and lungs.
Prerequisite(s): MATH 2004 and MAAE 2300.
Lectures three hours per week, laboratories or tutorials three hours per week.

MECH 3700 [0.5 credit]
Principles of Manufacturing

Manufacturing processes, materials. Casting: solidification and heat flow theory, defect formation, casting design. Metal forming: elementary plasticity theory, plastic failure criteria, force and work calculations. Bulk and sheet forming. Joining: heat flow and defect formation theory, residual stresses. Machining theory and methods. Hardening: diffusion, wear resistance.
Prerequisite(s): MAAE 2700.
Lectures three hours a week, problem analysis and laboratories one hour a week.

MECH 3710 [0.5 credit]
Biomaterials

Materials used in biomedical applications: metals, polymers, ceramics and composites. Material response and degradation. Properties of biologic materials; bone, cartilage, soft tissue. Materials selection for biocompatibility.
Prerequisite(s): MAAE 2700.
Lectures three hours per week, laboratories and problem analysis three hours per week.

MECH 4003 [0.5 credit]
Mechanical Systems Design

Design of mechanical systems: establishing design criteria, conceptual design, design economics, value analysis, synthesis and optimization. Mechanical elements/systems: gear and flexible drive systems, fluid power systems. These elements are utilized in group design projects.
Prerequisite(s): MECH 3002.
Lectures three hours a week, problem analysis three hours a week.

MECH 4006 [0.5 credit]
Vehicle Engineering I

The course emphasizes the engineering and design principles of road transport vehicles. Topics to be covered include: performance characteristics, handling behaviour and ride quality of road vehicles.
Prerequisite(s): MAAE 2101, MAAE 3004 (Dynamics of Machinery) and third- or fourth-year status in Engineering.
Lectures three hours a week.

MECH 4007 [0.5 credit]
Vehicle Engineering II

Engineering and design principles of off-road vehicles and air cushion technology. Topics include: mechanics of vehicle-terrain interaction - terramechanics, performance characteristics of off-road vehicles, steering of tracked vehicles, air cushion systems and their performance, applications of air cushion technology to transportation.
Prerequisite(s): MAAE 2101, MAAE 3004 (Dynamics of Machinery) and third-or fourth-year status in Engineering.
Lectures three hours a week.

MECH 4013 [0.5 credit]
Biomedical Device Design

Medical Devices: the industry and its regulation. Design methodologies. Examination of specific medical devices: surgical equipment, orthopedic devices, rehabilitation engineering, life support, artificial organs. Case studies.
Prerequisite(s): MECH 4210.
Lectures three hours per week, laboratories or tutorial three hours per week.

MECH 4101 [0.5 credit]
Mechanics of Deformable Solids

Course extends the student's ability in design and stress analysis. Topics include: introductory continuum mechanics, theory of elasticity, stress function approach, Lamé and Mitchell problems, stress concentrations, thermoelasticity and plasticity.
Prerequisite(s): MAAE 3202.
Lectures three hours a week.

MECH 4103 [0.5 credit]
Fatigue and Fracture Analysis

Elastic and elasto-plastic fracture mechanics. Fatigue design methods, fatigue crack initiation and growth Paris law and strain-life methods. Fatigue testing, scatter, mean stress effects and notches. Welded and built up structures, real load histories and corrosion fatigue. Damage tolerant design and fracture control plans.
Prerequisite(s): MAAE 3202.
Lectures three hours a week.

MECH 4104 [0.5 credit]
Vibration Analysis

Free and forced vibrations of one and two degree-of-freedom systems. Vibration measurement and isolation. Numerical methods for multi-degree-of-freedom systems. Modal analysis techniques. Dynamic vibration absorbers. Shaft whirling. Vibration of continuous systems: bars, plates, beams and shafts. Energy methods. Holzer method.
Prerequisite(s): MAAE 3004.
Lectures three hours per week.

MECH 4210 [0.5 credit]
Biomechanics

The biomechanics of biological systems; muscles and movement, nerves and motor control. Measurements of motion, strain and neural signals. The hand and manipulation; locomotion and the leg.
Prerequisite(s): MAAE 3202 and MECH 3710. Additional recommended background: MECH 3310.
Lectures three hours per week, laboratories or tutorials three hours per week.

MECH 4305 [0.5 credit]
Fluid Machinery

Types of machines. Similarity: performance parameters; characteristics; cavitation. Velocity triangles. Euler equation: impulse and reaction. Radial pumps and compressors: analysis, design and operation. Axial pumps and compressors: cascade and blade-element methods; staging; off-design performance; stall and surge. Axial turbines. Current design practice.
Prerequisite(s): MAAE 3300.
Lectures three hours a week.

MECH 4401 [0.5 credit]
Power Plant Analysis

Criteria of merit; selection of power plant for transportation and power generation applications; interrelation among mechanical, thermodynamic and aerodynamic design processes; jet propulsion, turbojets and turbofans; alternative proposals for vehicular power plant; combined cycle applications.
Precludes additional credit for Engineering AERO 4402.
Prerequisite(s): MAAE 2400.
Lectures three hours a week.

MECH 4403 [0.5 credit]
Power Generation Systems

Steam generators, solid, liquid, gaseous and biofuels and cycles. Geothermal, solar powerplants. Energy storage. Environmental aspects of power generation. Industrial use and auto-generation of energy. Energy intensity and efficiency of industrial processes and products. Comparative analysis of raw material, energy, or product transport. Life-cycle analysis.
Precludes additional credit for SREE 4001.
Prerequisite(s): MAAE 2300, MAAE 2400 and fourth year status in Mechanical, Aerospace, or Biomedical and Mechanical Engineering.
Lectures three hours a week. Problem analysis three hours per week.

MECH 4406 [0.5 credit]
Heat Transfer

Mechanisms of heat transfer: fundamentals and solutions. Steady and transient conduction: solution and numerical and electrical analog techniques. Convective heat transfer: free and forced convection for laminar and turbulent flows; heat exchangers. Heat transfer between black and grey surfaces, radiation shields, gas radiation, radiation interchange.
Precludes additional credit for AERO 4446.
Prerequisite(s): MAAE 2400, MAAE 3300 or MECH 3310, or ENVE 3001 and permission of the Department of Mechanical and Aerospace Engineering.
Lectures three hours a week.

MECH 4407 [0.5 credit]
Heating and Air Conditioning

Environmental demands for residential, commercial and industrial systems. Methods of altering and controlling environment. Air distribution. Refrigeration methods, equipment and controls. Integrated year-round air-conditioning and heating systems; heat pumps. Cooling load and air-conditioning calculations. Thermal radiation control. Component matching. System analysis and design.
Prerequisite(s): MAAE 2400 and third-year status in Engineering.
Lectures three hours a week.

MECH 4408 [0.5 credit]
Thermofluids and Energy Systems Design

Integration of fluid mechanics, thermodynamics, and heat transfer for design of energy conversion systems. Chemical kinetics and mass transfer. Efficient combustion, fuel cells and batteries. Efficient operation and design of engines, power generators, boilers, furnaces, incinerators, and co-generation systems. Emerging energy systems.
Prerequisite(s): MAAE 3400 and MECH 4406.
Lectures three hours per week.

MECH 4501 [0.5 credit]
State Space Modeling and Control

Review of matrices. Geometric structure and dynamics of linear systems. Controllability and observability. Pole placement design of controllers and observers. Design of regulator and servo systems. Transmission zeros. Eigenstructure assignment. Relationship to frequency or classical control techniques. Computer solutions using MATLAB. Applications.
Precludes additional credit for SYSC 5502.
Prerequisite(s): MAAE 4500 or AERO 4540 or SYSC 4505.
Lectures three hours a week.

MECH 4503 [0.5 credit]
An Introduction to Robotics

History of robotics and typical applications. Robotic actuators and sensors. Kinematics of manipulators, inverse kinematics, differential relationships and the Jacobian. Manipulator dynamics. Trajectory generation and path planning. Robot control and performance evaluation. Force control and compliance. Applications in manufacturing and other industries.
Prerequisite(s): MATH 3705 and SYSC 3600 or SYSC 3610.
Lectures three hours a week.

MECH 4604 [0.5 credit]
Finite Element Methods

Finite element methodology with emphasis on applications to stress analysis, heat transfer and fluid flow using the simplest one- and two-dimensional elements. Direct equilibrium, variational and Galerkin formulations. Computer programs and practical applications. Higher order elements.
Prerequisite(s): MAAE 3202 and (MAAE 3300 or MECH 3310).
Lectures three hours a week.

MECH 4704 [0.5 credit]
Integrated Manufacturing - CIMS

Overview of the topics essential to CIMS including integration of design and assembly techniques, numerical analysis, statistical process control and related production technologies within the manufacturing enterprise.
Prerequisite(s): AERO 3700 or MECH 3700.
Also offered at the graduate level, with different requirements, as MECH 5704, for which additional credit is precluded.
Lectures three hours a week.

MECH 4705 [0.5 credit]
CAD/CAM

Introduction to contemporary computer aided design and manufacturing (CAD/CAM) Topics covered include mathematical representation, solid modeling, drafting, mechanical assembly mechanism design, (CNC) machining. Current issues such as CAD data exchange standards, rapid prototyping, concurrent engineering, and design for X (DFX) are also discussed.
Prerequisite(s): MAAE 2001 (Engineering Graphics and Design) and fourth-year status in Engineering. Lectures three hours a week.
Lectures three hours a week.

MECH 4805 [0.5 credit]
Measurement and Data Systems

Experimental data, accuracy and uncertainty analysis. Analog systems. Sensors. Signal conditioning. Op-Amps, instrumentation amplifiers, charge amplifiers, filters. Digital techniques. Encoders, A/D D/A converters. Data acquisition using microcomputers. Hardware and software considerations. Interfacing. Applications to measurement of motion, strain, force/torque, pressure, fluid flow, temperature.
Precludes additional credit for Engineering ELEC 4805.
Prerequisite(s): STAT 3502, SYSC 3600 or SYSC 3610, and ELEC 3605 or ELEC 2501 or SYSC 3203.
Lectures three hours a week.

MECH 4806 [0.5 credit]
Mechatronics

Introduction to the integration of mechanical, electronic and software components to build mechatronic devices. Mechanical and electrical systems modeling, simulation and implementation. Basic automation and computer requirements. Design tools and examples of mechatronic applications.
Prerequisite(s): MAAE 4500 or AERO 4540 or SYSC 4505.
Lectures three hours per week.

Summer session: some of the courses listed in this Calendar are offered during the summer. Hours and scheduling for summer session courses will differ significantly from those reported in the fall/winter Calendar. To determine the scheduling and hours for summer session classes, consult the class schedule at central.carleton.ca

Not all courses listed are offered in a given year. For an up-to-date statement of course offerings for the current session and to determine the term of offering, consult the class schedule at central.carleton.ca